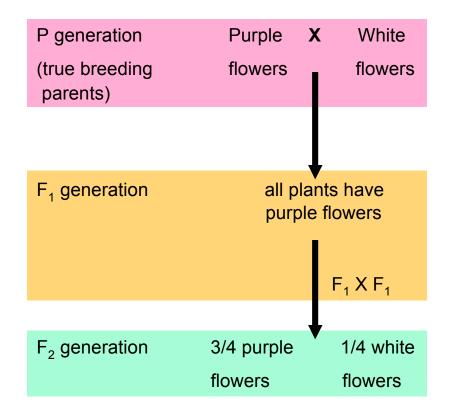


Development of genetics

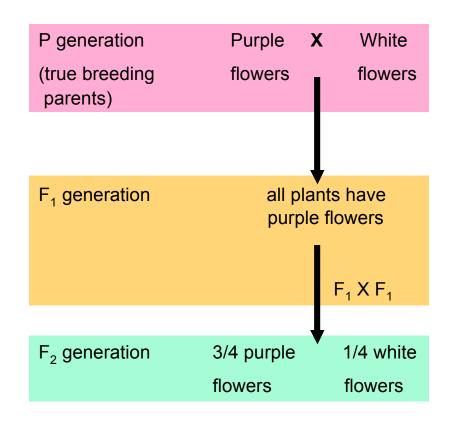
- Gregor Mendel (1865)
 - □ Discovered basic laws of heredity
 - □ Studied inheritance of single characteristics
 - Applied mathematic principles toward his hypothesis that each trait is determined by 2 genetic factors


Development of genetics

- Mendel studied pea plants
 - Easily manipulated
 - □ Self-fertilization
- Performed experiments tracking several characteristics in pea plants from which he formulated several hypotheses

Mendel's principles of segregation

- The monohybrid cross
 - a cross between parent plants that differ in only one characteristic



Mendel's principles of segregation

- Mendel developed 4 hypotheses from the monohybrid cross
 - □ There are alternative forms of genes (called <u>alleles</u>)
 - For each characteristic, each organism has two genes
 - Gametes carry only one allele for each inherited characteristic
 - Alleles can be dominant or recessive

Monohybrid cross results

Genetic makeup (alleles)

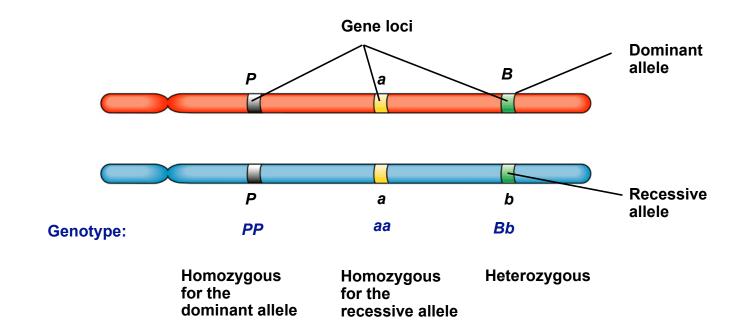
Some genetic terminology

- Phenotype an organisms expressed or physical traits
- Genotype genetic make-up
- <u>Allele</u> alternative forms of a gene
- Dominant allele --> determines the phenotype
- Recessive allele no noticeable effect on phenotype

Principle of Segregation

Pairs of alleles separate during gamete formation

```
Pp
/ \
P p
```


The fusion of gametes at fertilization creates allele pairs again

P p
\ /
Pp

Alleles and Homologous chromosomes

- Homologous chromosomes have genes at specific loci
- Have alleles of a gene at the same locus

Some more terminology

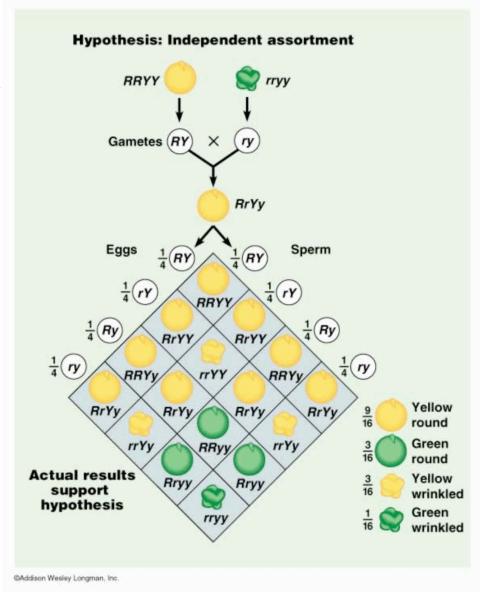
Homozygous- having two identical alleles for a given gene (PP or pp)

Heterozygous - two different alleles

×

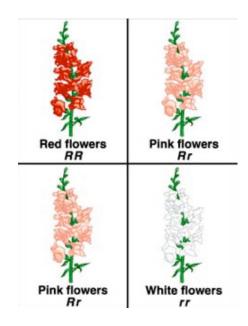
Principles of Inheritance

Mendel's principles of independent assortment


■ Each pair of alleles segregates independently of the other pairs during gamete formation

■ A cross of 2 dihybrids produces phenotype ratio of 9:3:3:1

Results in variation in sexual reproduction


Independent assortment

Post Mendelian Genetics

■ Incomplete dominance

In incomplete dominance, F₁ hybrids have an appearance in between the phenotypes of the two parents.

Post Mendelian Genetics

- Multiple Alleles
 - 3 or more alternative genes (alleles) which can occupy a single locus
 - □ Produce different phenotypes
- ABO blood groups in humans
 - □ Two of the human blood type alleles exhibit codominance
 - Both alleles are expressed in the phenotype

M

Principles of Inheritance

ABO blood groups in humans

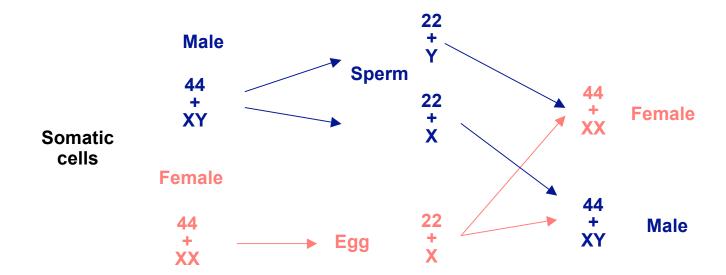
Blood Group		Antibodies Present in Blood	Reaction When Blood from Groups Below Is Mixed with Antibodies from Groups at Left				
(Phenotype)	Genotypes		0	Α	В	AB	
0	ii	Anti-A Anti-B					
A	ρΑ ρΑ or ρΑ ;	Anti-B					
В	I ^B I ^B or I ^B i	Anti-A					
АВ	_I Α _I Β	_					

M

Principles of Inheritance

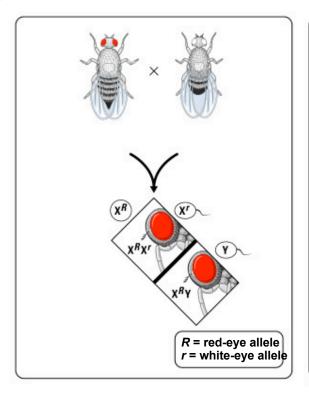
ABO blood groups in humans

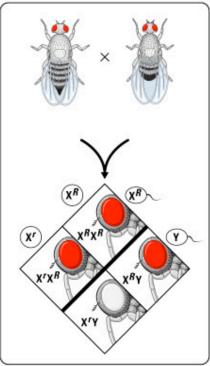
Blood Type	Distribution (%)	Antigen on RBC	Antibody in serum plasma	Will clot with blood from these donors	Can receive from:	Can give to:
0	48	ı	Anti-A Anit-B	A, B, AB	0	All
А	42	Α	Anti-B	B, AB	A & O	A & AB
В	7	В	Anti-A	A, AB	В&О	B & AB
АВ	2	A & B	-	-	All	AB

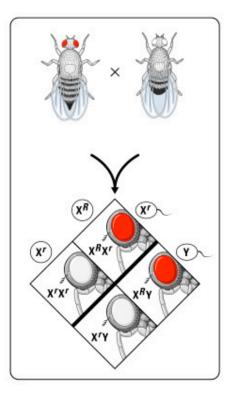

Type O Blood: Universal Donor as it contains no A or B antigens, so the receivers' blood will not clot when given the O blood.

Type AB Blood: Universal Receiver, as it contains no Anti-A or Anti-B antibodies in its plasma. It can receive all blood types.

Sex Chromosomes


XY method of sex determination





Sex-linked genes

genes located on a sex chromosome

Sex-linkage in humans

- A number of human conditions result from sex-linked (X-linked) genes
 - □ Red-green color blindness
 - □ Hemophilia (blood-clotting disease)

Human sex chromosome aberrations

- Results of <u>nondisjunction</u> during meiosis
 - The members of a chromosome pair fail to separate during anaphase
 - Gametes with an incorrect number of chromosomes are produced

Human sex chromosome aberrations

XXY Klinefelter's Syndrome

XO Turner's Syndrome

XXX Triple X Syndrome (normal female)

XYY XYY Syndrome (normal male)