Classification

Classification v. Taxonomy

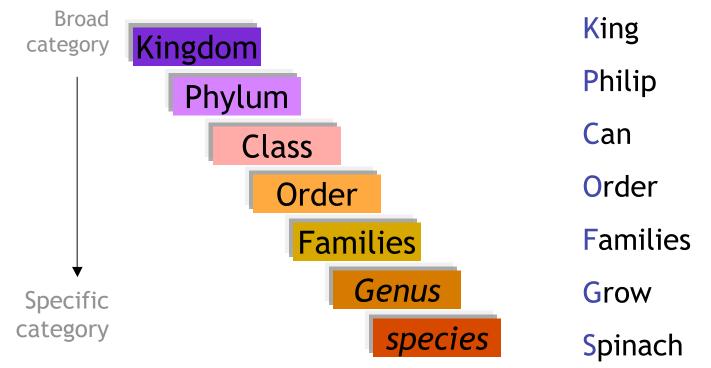
Classification

• the systematic grouping of entities into categories

Taxonomy

• the *science* of describing, naming and classifying organisms

Classification


Binomial name

- two-word naming system (Carolus Linnaeus)
- First part is the genus (genera, plural)
 Second part is the species

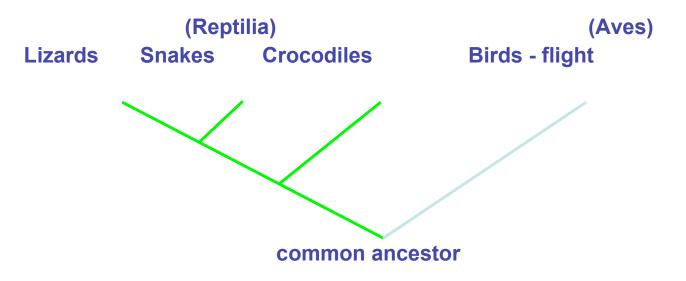
written: *Genus species* or <u>Genus species</u> ex. *Felis catus* (domestic cat)

Hierachical classification

 based on the grouping of related objects or description of objects

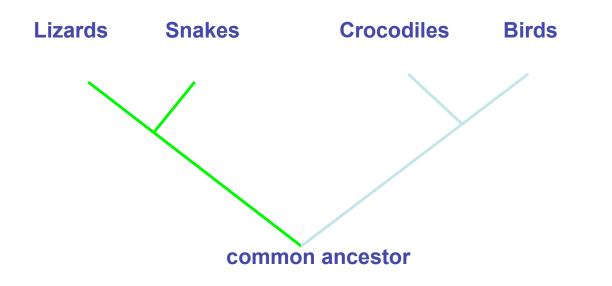
Phylogeny

 the evolutionary history of a species or a group of related species.


Phylogenetic tree

• a branching diagram that represents a hypothesis about evolutionary relationships among organisms.

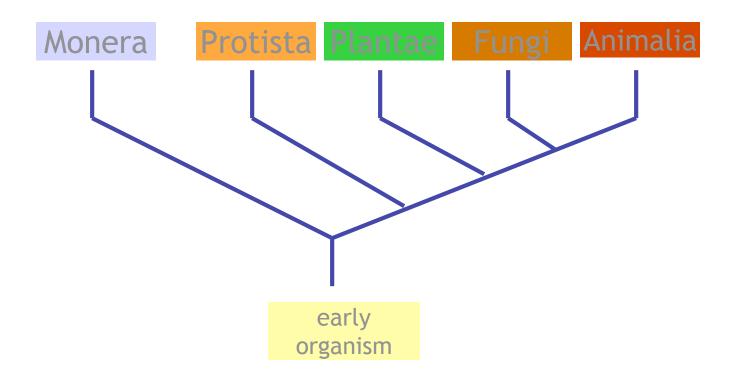
<u>Two</u> systems are used to classify organisms:


Traditional (Aristotelian) analysis

 Classification system based on similarities and differences showing increasing complexity.

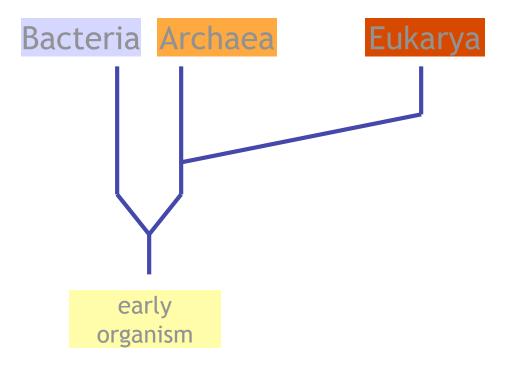
Cladistic analysis

• Classification system based on evolutionary relationships

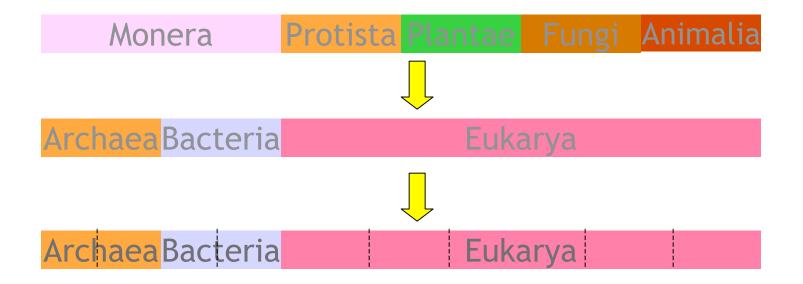

Arranging Life

- remember that phylogenetic trees are hypotheses about evolutionary history
- they are always being revised or even rejected
- classification is a work in progress

Two-kingdom system


• life sub-divided into either plant or animals

Five-kingdom system (Whittaker, 1969)

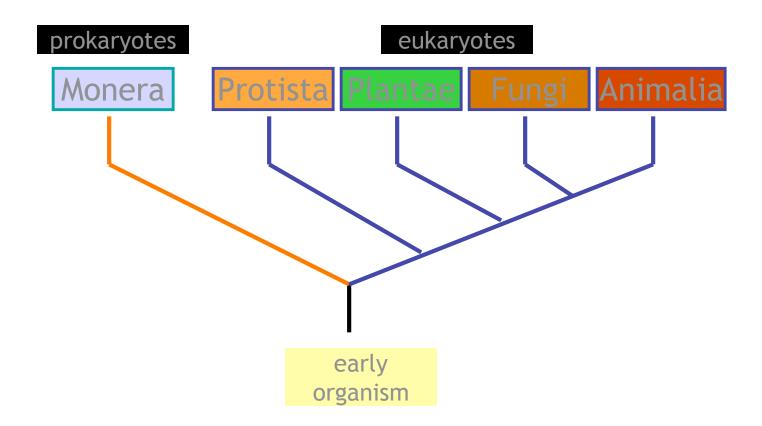


Three-domain system

• alternative system based on molecular and cladistical analysis

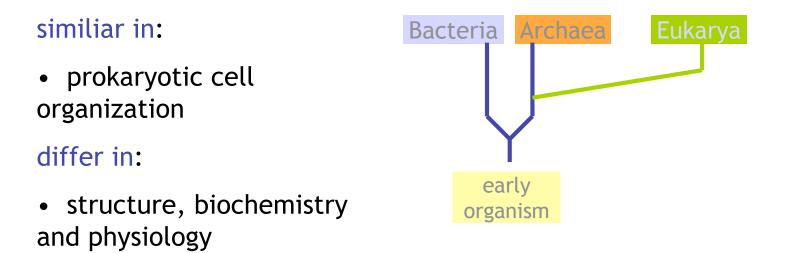
Changing view of biodiversity

Prokaryotes


Found everywhere there is life:

- inhabiting fertile soils, dead organisms
- conditions from extreme cold --> extreme hot; from extremely acidic --> extremely alkaline
- inhabit humans (mouths, intestines)
- outnumber all eukaryotes combined

Cellular organization (prokaryotes v. eukaryotes)


Prokaryotes	Eukaryotes
No true nucleus	Membrane-bound nucleus
Cell organelles absent	Golgi apparatus, endoplasmic reticulum, lysosomes, mitochodria, chloroplasts present

This difference in cellular organization divides Prokaryotes and Eukaryotes in the Five-kingdom system.

Diversity of Life - Prokaryote evolution

Identification of two major branches of prokaryotic evolution: Bacteria and Archaea

Archaea may be more related to eukaryotes than bacteria

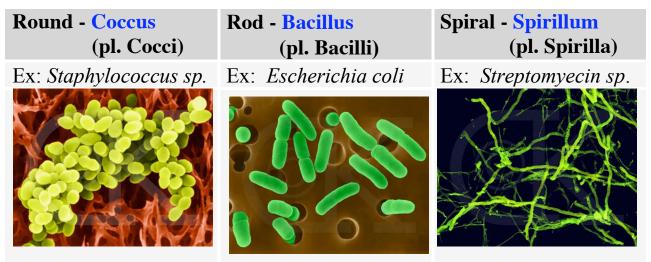
Diversity of Life - Prokaryote evolution

Comparison of the Three Domains of Life

Characteristic	Bacteria	Archaea	Eukarya
Nuclear envelope	No	No	Yes
Membrane- enclosed organelles	No	No	Yes
Peptidoglycan in cell wall	Yes	No	No
Membrane lipids	Unbranched hydrocarbons	Some branched hydrocarbons	Unbranched hydrocarbons
RNA polymersase	1 kind	several kinds	several kinds
amino acid start of	Formyl-	Methionine	Methionine
protein synthesis	methionine		
Introns	No	Some	Yes
Antibiotic	Yes	No	No
responses			
Histones	No	Yes	Yes
Circular	Yes	Yes	No
chromosomes			
growth at 100+°C	No	Some	No

Bacteria

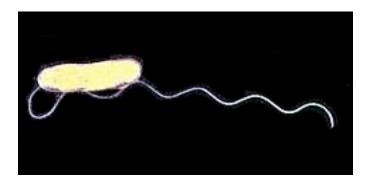
- found in soil, water, animal digestive tracks, etc.
- nutrition (fuel to drive cellular processes)
 - light energy (phototrophism)
 - organic/inorganic energy (chemotrophism)


Archaea (archaios = ancient)

- anaerobes
- most species inhabit extreme environments (extremophiles)

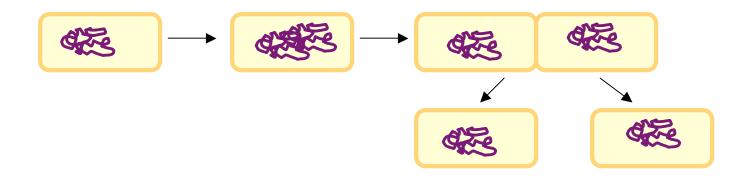
halophiles - require salt for growth thermophiles - live near deep-sea thermal vents, temps. >100°C acidophiles - enjoy acidic conditions

Structure


• identification by cell shape

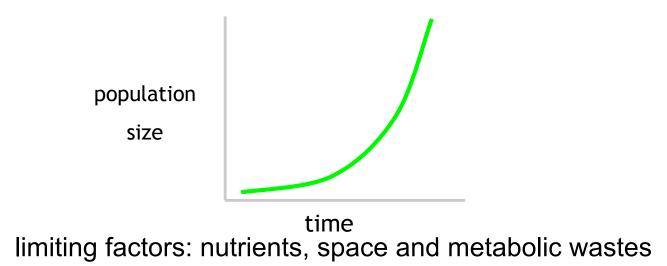
Bacteria images by Dennis Knunkle

Structure


- microscopic
- unicellular
- motile (flagella)

Reproduction

Binary Fission


- asexual reproduction (creation of offspring by a single parent without a sperm and egg)
- parent organism divides into 2 individuals of about the same size

Reproduction

٠

• exhibit exponential growth

Prokaryote Nutrition

nutrition - method by which an organism obtains resources for synthesizing organic compounds

- energy
- carbon source

<u>Energy sources</u> light	<u>Carbon sources</u> organic compounds (containing carbon)
chemicals	inorganic compound

Four major modes of nutrition are classified according to these categories:

<u>Photoautotrophs</u> (photo = light; auto = self; troph = food)

- photosynthetic organisms that
 - (1) use light energy to
 - (2) synthesize organic compounds from CO_2
- examples: cyanobacteria, algae, plants

Four major modes of nutrition are classified according to these categories:

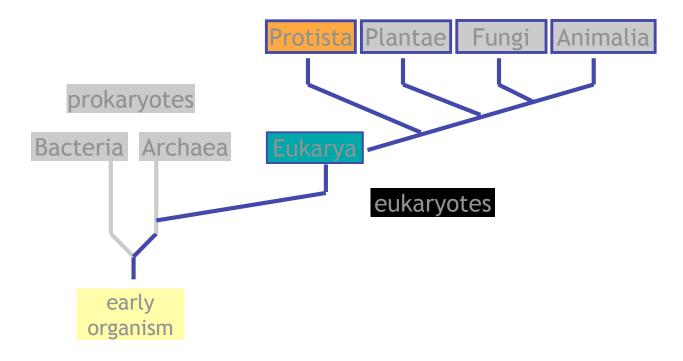
<u>Chemoautotrophs</u> (chemo = chemical; auto = self; troph = food)

- organisms that
 - (1) extract energy from inorganic compounds (H_2S or NH_3) to (2) synthesize organic compounds from CO_2
- examples: prokaryotes living near deep-sea hot water vent

Four major modes of nutrition are classified according to these categories:

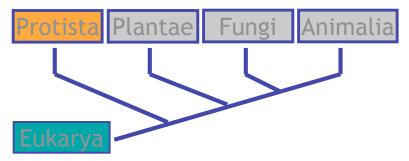
<u>Photoheterotrophs</u> (photo = light; hetero = other; troph = food)

organisms that
(1) use light energy to generate ATP but
(2) must obtain carbon sources from outside organic forms

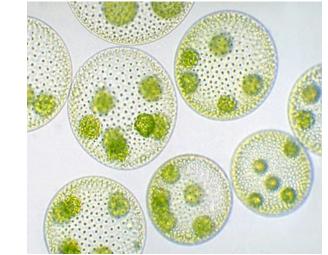

Four major modes of nutrition are classified according to these categories:

Chemoheterotrophs

- organisms that must consume molecules for both energy and carbon
- examples: some prokaryotes, protists and plants <u>all fungi</u> and <u>animals</u>

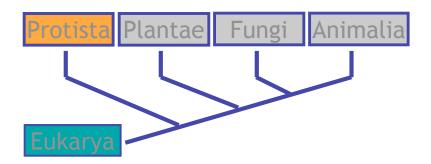

Protists

- eukaryotic
- probably evolved through endosymbiosis


Protists

- simplest eukaryotic organism
- complex on the cellular level

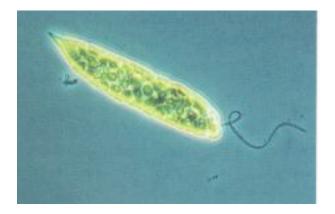
• most unicellular (but some live in colonies)



Protists

Four major categories:

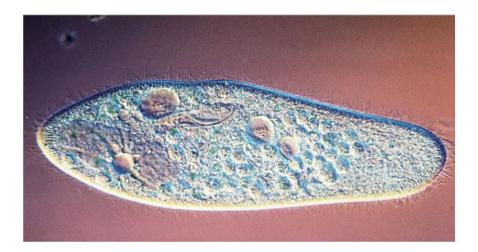
- Protozoans
- Slime Molds
- Unicellular Algae
- Multicellular Algae


Protozoans

- nutrition: ingest food/ nutrients
- habitat: watery environments
- classified by means of locomotion: Flagellates Ciliates
 - Amoebas

Diversity of Life - Protozoans

Flagellates


- move by means of one or more flagella (long appendage)
- most are free-living (non-parasitic)
- example: Euglena sp.

Diversity of Life - Protozoans

Ciliates

- use cilia (short appendages) to move and feed
- most are free-living
- example: Paramecium sp.

Diversity of Life - Protozoans

Amoebas

- use pseudopodia (temporary extension of the cell) for movement and feeding (phagocytosis)
- example: Amoeba proteus

Slime Molds

- filamentous bodies (resembling fungi, <u>but don't confuse</u> <u>them</u>)
- pseudopodium for movement and feeding
- decomposers

Unicellular Algae

- Photosynthetic
- many are components of plankton (organisms drifting near surface of lakes or oceans)
- planktonic algae are called phytoplankton (phyto = plant)
- primary producers in freshwater and marine ecosystems

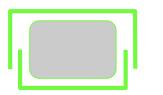
Diversity of Life - Unicellular Algae

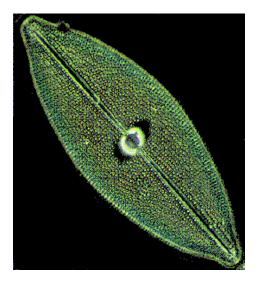
Dinoflagellates

- unicellular
- biflagellates (two whirling flagella)
- aquatic

Ecological importance:

- red tides
 - coastal water discoloration by a bloom of red dinoflagellates
 - some red tide dinoflagellates produce toxins

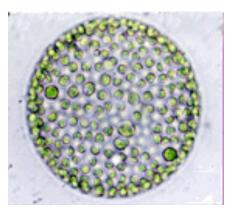




Diversity of Life - Unicellular Algae

Diatoms

- unicellular
- exoskeleton (contains silicon) composed of 2 halves



Diversity of Life - Unicellular Algae

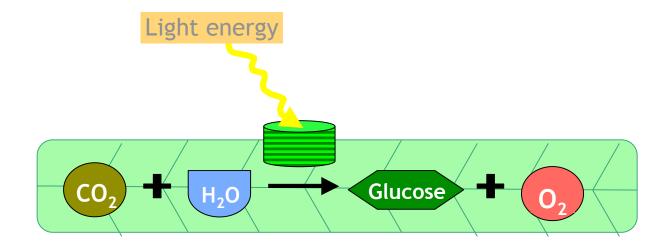
Green Algae

- unicellular (some colonial)
- inhabit freshwater lakes and ponds
- most closely related to green plants
- example: Volvox

Diversity of Life - Protista

Multicellular

Seaweeds

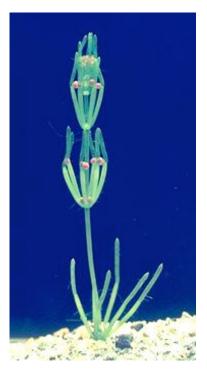

- large, multicellular marine algae
- similarity to true plants is an example of convergent evolution

Diversity of Life - Plantae

What is a Plant?

- multicellular eukaryotes
- terrestrial
- synthesizes organic molecules by photosynthesis

Protista Plantae


Fungi

Animalia

Diversity of Life - Plantae

Evolution to Land

- green algae are most closely related to plants
- molecular research shows that the multicellular, green algae (charophytes) is the closest relative to plants
- gradual accumulation of terrestrial adaptations

Diversity of Life - Plant Evolution

Terrestrial Adaptation

In the water ... all resources a plant needs are found all around

On land ... these resources are found in two different places

- light and CO₂ available above ground
- water and mineral nutrients are mainly in the soil

So ... some adaptations were needed for plants to exist on land

Diversity of Life - Plant adaptation to land

Structural Adaptations

Leaves - main photosynthetic organs

- exchange of gases (CO₂ / O₂) through pores on the leaf's surface called stomata
- cuticle (waxy layer) reduces water loss

Stems

- support for plant
- lignin-rich cell walls

Diversity of Life - Plant adaptation to land

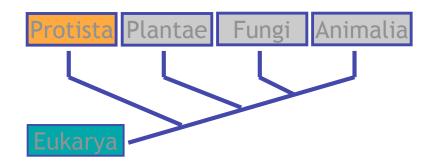
Structural Adaptations

Roots

- anchorage
- absorption of water and minerial

Vascular Tissues

- transport of vital materials between organs
- system of tube-shaped cells


Diversity of Life - Plant Evolution

Plant Diversity

(1) Origin of plants ---> Bryophytes (mosses)
(2) Vascular plants ---> Ferns
(3) Seeded plants ---> Gymnosperms (conifers)
(4) Flowering plants ---> Angiosperms

Diversity of Life - Fungi

Fungi

- eukaryotes
- mostly multicellular
- more closely related to animals than to plants
- heterotrophs
 - acquire nutrients by absorption
 - secret enzymes that breakdown food

Diversity of Life - Fungi

Fungi Structure

- adapted for the purpose of absorbing nutrient
- bodies constructed of thread-like tubular structures called hyphae
- hyphae forms a feeding network called the mycelium
- most of these structures are underground

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

Diversity of Life - Fungi

Ecological Roles

- decomposers
- recycle chemical elements back into the environment

Diversity of Life

Calendar of Geological Time (1 day = 150 million years)

1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	<u>2</u> 1
22	23	24	25	26	27	28
29	30					

- 1: The origin of the Earth
- 8: Prokaryote cells
- 10: Oldest fossils bacteria and blue-green algae
- 24: First eukaryotic cells
- 28: First land plants
- 29: Gymnosperms
- 30: Angiosperms; humans