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Abstract

Photosensitizer photochemical parameters are crucial data in accurate
dosimetry for photodynamic therapy (PDT) based on photochemical
modeling. Progress has been made in the last few decades in determining the
photochemical properties of commonly used photosensitizers (PS), but mostly
in solution or in vitro. Recent developments allow for the estimation of some
of these photochemical parameters in vivo. This review will cover the currently
available in vivo photochemical properties of photosensitizers as well as the
techniques for measuring those parameters. Furthermore, photochemical
parameters that are independent of environmental factors or are universal for
different photosensitizers will be examined. Most photosensitizers discussed
in this review are of the type II (singlet oxygen) photooxidation category,
although type I photosensitizers that involve other reactive oxygen species
(ROS) will be discussed as well. The compilation of these parameters will be
essential for ROS modeling of PDT.
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List of symbols

Pros

ko, ka
ki, kos
ko, kot
k3, ke
k3Nr
k3r
o Ky
kanr
kar
ks, kisc

ke, ka

30, solubility coefficient, see equation (B.3) (M mmHg ™)

30, solubility in plasma, see equation (B.1) (4M mmHg ")

30, solubility in tissue, see equation (B.4) (uM mmHg ')

(kg + kg [A] )k, see table 2, (uM)

Rate of the oxygen loading/unloading, see equation (14) (uM s )

Low concentration correction, see table 2, equation (19) (uM)

Extinction coefficient, see table 2 (cm™! pM~")

Hypoxic reaction consumption rate, see table 2 (cm> mW~! s~! ;M)

Specific oxygen consumption rate, see table 2, (cm’> mW~! s7!)

Specific photobleaching ratio, see table 2, (uM™")

Fluorescence lifetime, see table 2, (s)

Triplet lifetime, see table 2, (s)

Singlet oxygen lifetime, see table 2, (s)

Fluence rate, see equation (20), (mW cm™2)

Fluorescence quantum yield, see table 2

Triplet quantum yield, see table 2

Singlet oxygen quantum yield, see table 2

Superoxide anion quantum yield, see table 2

Biological substrates that are singlet oxygen receptors, see table 2, equation (9) (M)
Hemoglobin concentration in blood, see equation (B.2) (M)

30, diffusion coefficient in capillary, see equation (B.1) (um? s~ 1)

Hemoglobin diffusion coefficient, see equation (B.2) (um? s ')

30, diffusion coefficient in vascular media, see equation (B.5) (um? s~ ')

30, diffusion coefficient in tissue, see equation (B.4) (um? s~

Oxygen perfusion rate, see table 2, equation (18) (uM s~

Photon absorption rate of photosensitizer per photosensitizer concentration,
ko = eplhv, see table 1, equations (1) and (29) (s~!)

Bimolecular rate for 'O (ki) and ROS (k;;) reactions with ground-state photosensi-
tizer, see table 1, equation (2) (M ~!s™1)

Bimolecular rate of triplet photosensitizer quenching by 30, see table 1, equation (3)
(M s h

Decay rate of first excited singlet state photosensitizer to ground state photosensitizer,
k3 = kangr + kg, see table 1, equation (1) (s™")

Non-radiative (spontaneous) decay rate of first excited singlet state photosensitizer to
ground state photosensitizer, see table 2, equation (1) (s~")

Radiative (fluorescence) rate of monomolecular decay of the first excited singlet state
photosensitizer to ground state photosensitizer, see equation (1) (s~")
Phosphorescence decay rate of the photosensitizer triplet state to ground state,
k4 = kynr + kyr, see table 1, equation (6) (s™')

Non-radiative rate of monomolecular decay of the photosensitizer triplet state, see
equation (42) (s~

Radiative rate of monomolecular decay of the photosensitizer triplet state, see
equation (42) (s~

Intersystem crossing rate of first excited photosensitizer to triplet state photosensitizer,
see table 1, equation (7) (s ')

10, t0 30, phosphorescence decay rate, see table 1, equation (8) D)
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k7, koa Bimolecular rate of reaction of 'O, with biological substrate [A], see table 1,
equation (9) (M~ s7h

kg, kia Bimolecular rate of reaction of 7 with biological substrate [A], see table 1,
equation (10) (M~ s7h

kq Physical quenching rate of 10, by substrate [A], see equation (41), s h

ke Chemical quenching rate of 'O, by substrate [A], see equation (41), (s ')

P Oxygen partial pressure, see equation (B.3) (mmHg)

P Oxygen partial pressure at half maximum oxygen consumption concentration, see
equation (B.4) (mmHg)

q0 30, maximum metabolic consumption rate, see equation (B.4), (uM s~ ')

So Photosensitizer in its ground state, see figure 2

Si Photosensitizer in its first singlet state, see figure 2

SA Fraction of triplet-state photosensitizer->O, reactions to produce 'O,, see table 2

S Fraction of triplet state photosensitizer->O, reactions that involve type I reactions,
see table 2

SNL Fraction of triplet state photosensitizer reactions that are non-luminescent,
see table 2

Sa (Sa0O,) Hemoglobin oxygen saturation, see equation (B.2)

T, Photosensitizer in its first triplet state, see figure 2

v Velocity of blood flow, see equations (B.1) and (B.2) (um s~

1. Introduction

Photodynamic therapy (PDT) is a treatment modality for malignant and non-malignant dis-
eases that uses visible light to activate photosensitizers (PS) to generate cytotoxic oxygen
species to kill cancer cells (Dougherty 1993). PDT has been approved by the US Food and
Drug Administration for the treatment of microinvasive lung cancer, obstructing lung cancer,
and obstructing esophageal cancer, as well as for premalignant actinic keratosis and age-
related macular degeneration (Huang 2005, Wilson and Patterson 2008, Zhu and Finlay 2008,
Agostinis ef al 2011, Simone et al 2012, Pogue et al 2016).

PDT is not only ‘dynamic’ but also multifaceted. There are three principal components:
photosensitizer, light, and oxygen, all of which interact on time scales relevant to a single
treatment. The distribution of light is determined by the light source characteristics and the
tissue optical properties. The tissue optical properties, in turn, are influenced by the concentra-
tion of photosensitizer and the concentration and oxygenation of the blood. The distribution
of oxygen is altered by the photodynamic process, because it consumes oxygen, thus affecting
the ingress of oxygen diffusion into tissue. The distribution of photosensitizer can be modeled
as a diffusion process through the vasculature for most PS. Some, such as 5-aminolevulinic
acid (ALA), induce the production of protoporphyrin IX (PpIX), which is governed by the
concentration of free heme (Kennedy and Pottier 1992). Finally, distribution of the photosen-
sitizer may change as a result of photobleaching, which is the photodynamic destruction of the
photosensitizer itself. To account for these interactions, a dynamic model of the photodynamic
process is required.

Two types of photosensitized oxidation, named type I and type II, have emerged, as shown
in figure 1 (Foote 1976, 1991, Adam 1981, Ranby 1981, Greer 2006, Cadet et al 2008). Both
reactions involve the absorption of light by a photosensitizer ([Sp]) to produce an excited-state
photosensitizer ([S;]) (Foote 1991).
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Figure 1. Type I and type II photosensitized oxidations. The type I pathway produce
radicals or radical ions, which in subsequent reactions produce ROS. The type II
pathway is primarily due to energy transfer from an excited photosensitizer to triplet
oxygen to produce singlet oxygen.
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Figure 2. Diagram for the photoactivation of photosensitizer in the presence of oxygen
and biomolecules. The photosensitizer in its ground state (Sp) absorbs a photon and
is excited to its first singlet state (S;). It converts to its excited triplet state (7;) via
intersystem crossing (ISC). From 77, energy is transferred to ground state molecular
oxygen (°0,), creating reactive singlet oxygen ('0,) for a typical type II reaction. In
type I reactions, the triplet photosensitizer will transfer an electron to >0, which will
react with molecular targets to produce radical species, or alternatively interact directly
with the acceptor, [A], without oxygen mediation. k3 and k4 include both radiative and
non-radiative decay rates for fluorescence and phosphorescence, respectively (see
table 1).

The type I mechanism involves hydrogen atom or electron transfer, yielding radicals or
radical ions (Foote 1991, Greer 2006, Ghogare and Greer 2016). The triplet state photosensi-
tizer can also react directly with an organic molecule or substrate, but this is not classified as
a photosensitized oxidation. Here, the substrate can donate an electron to the photosensitizer,
creating a substrate radical cation and a photosensitizer radical anion (Simone et al 2012).
This process can occur in hypoxic conditions, but in the presence of oxygen, the triplet pho-
tosensitizer can undergo an electron transfer with molecular oxygen to generate superoxide
anions (O, ") (Sharman et al 2000). The radicals formed can react with each other to chain
terminate or with other molecules (such as the molecular target or the solvent) to form other
radical species leading to secondary reactions leading to oxygenated compounds (Gollnick
1968, Sharman et al 2000, Simone et al 2012). Superoxide anion is not very reactive in bio-
logical systems, but it can react with water to form hydrogen peroxide (H,O,). H>O, easily
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passes through biological membranes, and since it is not restricted to one cellular comp-
onent, it is quite relevant in causing cellular damage. Figure 2 shows the two pathways of a
type I interaction—one via triplet state photosensitizer interacting with [A] directly without
any oxygen mediation and one via an electron transfer to oxygen to form the superoxide
anion (0, ).

Most PS used in the clinic are of the type II category, which produce singlet oxygen as
the main photocytotoxic agent for events that eventually cause cell death and/or therapeutic
effects (Foote 1976, Weishaupt et al 1976, Zhu and Finlay 2008, Douki et al 2002). In contrast
to type I reactions, such as electron transfer to oxygen, in type Il reactions, the photosensitizer
triplet state, [7)], transfers energy to molecular oxygen to generate 'O,. During PDT, as shown
in figure 2, photosensitizer is excited by light at a certain wavelength matching the absorption
energy gap to the excited state [S;] from its ground state [Sp]. Both this state and the ground
state are spectroscopic singlet states. One essential property of a good photosensitizer is a
high intersystem crossing (ISC) yield, i.e. a high probability of transition from (S) to a triplet
state (7). In the T state, the photosensitizer can transfer energy to molecular oxygen (0,),
exciting it to its highly reactive singlet state ('0,). Ideal photosensitizer properties and exper-
imental conditions that favor the singlet oxygen (type II) pathway include (i) a high extinction
coefficient (), (ii) a high triplet quantum yield of the photosensitizer (®; ~ 1), and (iii) a low
chemical reactivity of the photosensitizer triplet state (kg ~ 0). Competition between type I and
II photooxidation chemistry is inevitable upon the formation of an excited photosensitizer in
the presence of 0,. For Rose Bengal, singlet oxygen ('0,) is a key reactive species produced
in PDT, where estimates place the singlet oxygen contribution at ~80%, and hydroxyl radical
and other reactive oxygen species (ROS) at ~20% (Pouget et al 2000). Photosensitizer proper-
ties and the concentration of oxygen present in the environment will be an important factor in
determining the ratio between the two types of reactions (Plaetzer et al 2009).

2. Impact of dosimetry to clinical PDT

Explicit PDT dosimetry has been performed in pre-clinical and clinical applications. Among
the three components (light, photosensitizer (PS), and oxygen), much work has focused on
the measurement of the light fluence and PS concentration. Oxygen transport and consump-
tion during PDT remain important for the modeling of ROS generation. Currently available
methods to measure tissue oxygenation concentration are still in the pre-clinical stage. The
macroscopic model described in section 3 can be used to calculate the ROS concentration (see
equation (27)) based on explicit dosimetry measurements of light fluence and PS concentra-
tion. Current state of the art of clinical PDT prescriptions use the product of the drug concen-
tration and light fluence, also called PDT dose.

Pre-clinical mouse studies were performed to compare the correlation of the dosimetric
metrics (total light fluence, PDT dose, calculation of reacted singlet oxygen) and PDT effi-
cacy (Penjweini et al 2015a, Kim et al 2015, Qiu et al 2016). Figure 3 shows the comparison
between the PDT dose metrics and PDT outcome for BPD-mediated PDT in RIF tumor bear-
ing mice. Cure index, CI = [1 — (tumor growth rate)/(control tumor growth rate)], was used
as a measure of tumor control by PDT: CI = 0 no PDT effect; CI = 1 complete PDT cure. It
is clear that the correlation is progressively improving from total fluence (figure 3(a)), PDT
dose (figure 3(b)), to reacted singlet oxygen, ['O,] (figure 3(c)), as the grey uncertainty of
the correlation reduces with the corresponding goodness of fit R* = 0.73, 0.93, and 0.99,
respectively.
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3. Type | and Il photosensitized oxidation reactions

3.1. Photochemical reactions

The PDT kinetics process was described using rate equations in the literature for microscopic
and macroscopic models (Wilkinson and Brummer 1981, Foster et al 1991, Hu et al 2005, Zhu
et al 2007). The PDT process is started by the absorption of light by the photosensitizer in the
ground state, Sy. It is excited into the singlet state, S;. The S; state can spontaneously decay to
the ground state with the emission of a photon or heat (Zhu et al 2007)

k(]
[Sol <> [S1]. ey

This is a reversible process. The monomolecular absorption rate, ky (s'), is proportional to
the light fluence, ¢, and the extinction coefficient, . The monomolecular decay rate, k3 (s~ D is
the rate from S to Sp. The decay rate duc to fluorescence (radiative) is kzr (s~ and the inter-
nal conversion (non-radiative) decay rate is ksngr (s, so that k3 = ksnr + k3r (Sterenborg
and van Gemert 1996). The photosensitizer in its ground state can interact with singlet oxygen
and ROS to form a photoproduct [SO;]. This can be described by the decay rate constant,
ki = kit + ko (uM~'s7h

[Sol + ['0a] 22 [SO,] (type 1), (2a)

and

[So] + [05°1 24 [SO,] (type D). )

Similarly, the bimolecular decay rate, k (,uM’1 s~ 1), describes the rate of interactions by col-
lisions between the triplet state photosensitizer [T)] and ground state oxygen [30,]. A fraction
(Sa) of the interactions yields singlet oxygen (equation (3)), while another fraction (Sy) yields
the superoxide anion (O; ") as in (4)

(1] + 051 25 [So] + (0] (type ID), 3)
(1] + 051 251571 + [0, ] (type I, @)
[T+ 051 2% 5] + [F04] . ©)

The last equation shows the fraction (Sxr, = 1 — Sa — Sp) of the interactions between the trip-
let state photosensitizer and ground state oxygen to produce non-luminescent decay of [7]
and do not yield singlet oxygen and/or superoxide anion. Physical quenching can also occur
where singlet oxygen is converted back to triplet oxygen ('O, — 30,) (Foote 1991). Sy is the
fraction of interactions of [7] that produce type I reactions.

Triplet decay rate and ISC of the photosensitizer are described by the monomolecular reac-
tion rates k4 and ks (s~ '), respectively. The triplet decay rate includes both the radiative (ksg)
and non-radiative (kyngr) decay rate constants

[T 2 [So], ©)
(i 571 (7
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Table 1. Definition of photochemical reaction rate constants.

Symbol* Definition

ko, ko (s™1 Photon absorption rate of photosensitizer as a function of photosensitizer
concentration (in M), kg = e¢/hv, for ¢ = 100 mW cm2.
ki, kos (;I,M*1 s Bimolecular decay rate for 10, (k12) and ROS (ki) reactions with ground-state
photosensitizer
ko, ko (UM 571 Bimolecular decay rate of triplet photosensitizer quenching by 30,
Sika Reactions involving triplet state and electron transfer to 30, (type I)
Saks Reactions involving triplet state and energy transfer to 30, (type IT)
Snrks Reactions involving triplet state that are non-luminescent
ks, ky (s7h) Fluorescence decay rate of first excited singlet state photosensitizer to ground
state photosensitizer including internal conversion (non-radiative, k3xg) and
fluorescent (radiative, k3g) terms

kay ky (s Phosphorescence decay of the photosensitizer triplet state to ground state
photosensitizer, including radiative (k4r) and non-radiative (ksng) components

ks, kise (s1) Intersystem crossing (ISC) rate from first excited photosensitizer to triplet state
photosensitizer

ke, ka (71 Phosphorescence (or luminescence) decay rate of 10, to 30,

k7, koy (WML 571y Bimolecular decay rate of reaction of type II 'O5 (k72) and type I ROS (k7;) with
biological substrate [A]

kg, ki (UM 1571 Bimolecular decay rate constant for reaction of triplet photosensitizer with
substrate [A] for type I reactions

@ The first symbol is used in this paper. The second symbol is also commonly found in the literature.

The phosphorescence (or luminescence) of singlet oxygen is described by the monomolecular
decay rate k¢ (s ')

['02] % [P0, )

This reaction produces the signature luminescence at 1270nm. However, there are also non-
luminescent reactions of 'Oy, such as solvent quenching or physical quenching of '0,, men-
tioned above and described next in section 3.1.1 (Wilkinson et al 1993).

The oxidation of biomolecular acceptors, [A], is described by the decay rate k7 = k7, + k7z
(o)

k72

['02] + [A] —3[AO,] (type ID), (9a)
and
[07°] + [A] & [A04] (type D). (9b)

Table 1 summarizes the definition of all rate constants used here along with their conventional
names.

3.1.1. Kinetics of type | reactions. Type I photooxidation reactions are described by the
bimolecular reaction rate Sk, (/LM’1 s~ 1) with the fraction of triplet interactions that lead to
type I reactions (equation (4)). In a type I reaction, the photosensitizer can undergo electron
transfer with oxygen to generate a superoxide anion (O, *). Superoxide anion, its protonated
form HO," and other radicals such as hydroxyl radicals (HO") readily cause cell damage (see
figure 4). Notice that even though ROSs can be generated by the superoxide anion (O;")
from a type I photosensitizer, there are many additional pathways to generate ROS that are
not all included in figure 4. Details of which can be found elsewhere (Plaetzer et al 2009).
R8
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Secondary (Photochemical) Reactions Cytotoxic Reactions

O, + H,0 == HO,+ OH"

0" + 0,7 — H0, OH~ Oxidati
0" + H0, — O,(I;)+ OH + OH" NEEp o N Cellular
0, + Fe(lll) —> 30,(%) + Fe(ll) oy Acceptors Ramsge

Fe(ll) + H,0, — Fe(lll) + OH- + OH™

Figure 4. Secondary (photochemical) reactions for type I photosensitizer to generate
the resulting reactive oxygen species (OH™ ", H,O,, O, ). Other redox active metals
may be pertinent for generation of ROS and should be included as part of secondary
reactions in ‘...”. ROS will in turn oxidate acceptors in cells to cause cellular damage.
OH "and HO" have been used interchangeably in the text.

State of molecular

Energy (kcal/mol)
oxygen
'0,('%y)  2"excited state 37 ———— 'z
fast
0, ('Ag) 1% excited state 22 = A4
slow
302(325,) ground state  Q —————— 3Z4

Figure 5. Energy diagram of triplet ground-state O, (3Zg), excited singlet delta ('A,)
and excited singlet sigma (IZ;) state of oxygen.

For simplicity, we have lumped these interactions as direct interaction with superoxide anion
(equation (9b)). Other reactions involve the reaction of the triplet state [7;] with the molecular
substrate directly, described by the reaction rate kg (uM~' s71)

[Ti]+ [A] 2 [7A]. (10)

3.1.2. Kinetics of type Il reactions.

Diatomic oxygen energy states. The electronic behavior of molecular oxygen results from
the arrangement of two electrons in the outer 7, shell (it has a total of 16 electrons since Z = 8
for each O atom) (Kasha 1985, Greer ef al 2014). Molecular oxygen has an electron configura-
tion in which orbitals are designated as even parity (g = gerade) or odd parity (u = ungerade)

(109)*(204)*(205)*(20u)*(30)* (1) *(17,)*

where the 7, orbital (formally an open shell) has three possible electron spin arrangements
giving rise to three energetically different species: 32;, lAg and IZ;’ (figure 5). Ground state
molecular oxygen (329 is a triplet (/ = 1) and biradical in character; while the two singlet
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states (I = 0) lAg and IZ; both exist on excited surface. The first excited state (lAg) is located
22 kcal mol~! (0.954eV, \ = 1270nm) above the ground state with electrons paired in oxy-
gen’s degenerate 7 antibonding orbitals. A valence bond treatment can also be considered:
The ionic resonance structures for dioxygen, O"—O~ and equally contributing O~—O" for
lAg, are unimportant compared to ground-state triplet for O, because of the positive charge on
oxygen. The second singlet excited state (IZ;) is located 37 kcal mol~! (1.6eV, A = 755nm)
above the ground state. Quenching of the excited PS of a high enough energy by the ground
state molecular oxygen produces both forms of singlet oxygen (Greer et al 2014). Because
lAg oxygen lifetimes are in the microsecond range they can undergo bimolecular reactions;
in contrast, the IZ; oxygen lifetime is short (due to the faster interconversion to lAg oxygen)
(Weldon et al 1999) and thus chemically unreactive.

Photosensitization routes to lAg and IZ; are of interest. However, the longer lifetime of
lAg oxygen relates to its chemical reactivity. Chemical reactivity has been generated for lAg
oxygen with biomolecules. Consequently, bimolecular reaction rates for the disappearance of
and oxidation by 'A, oxygen (labeled as 'O, in this paper) are available.

The reactions of singlet oxygen with substrates can be defined by the rate constants
(k72, k). k77 (also commonly called k,) is the total reaction rate constant which gives the
total rate of disappearance of 'O, induced by substrate both chemically and physically
(koa = kq + ki), where kg is the physical quenching (quenching of 'O, due to an interaction
with another molecule) rate constant, and k, is the chemical reaction rate constant of 'O,
which accounts for the rate of formation of oxygenated products. The variable ~ relates to
the consumption of the product. k¢ (also commonly called kq) is rate constant for natural
decay of '0; back to 30, (also called solvent quenching). For example, amines efficiently
deactivate !0, back to >0, by charge-transfer quenching and carotenoids efficiently deac-
tivate 'O, back to 30, by energy-transfer quenching (Rodgers and Lee 1984, Catalan et al
2003, Musbat et al 2013, Lambert and Redmond 1994).

In vivo photochemical reactions of singlet oxygen. Over the past five decades, the reac-
tivity of 'O, has been explored. Singlet oxygen reacts with compounds and biological
material to give oxygenated products, such as endoperoxides from [2 + 4] cycloadditions,
dioxetanes from [2 + 2] cycloadditions, oxides from heteroatom oxidations, hydroperox-
ides from ‘ene’ reactions and tandem 'O, reactions (Turro et al 2010, Zamadar and Greer
2010, Stratakis and Orfanopoulos 2000, Vassilikogiannakis et al 2005, Kotzabasaki et al
2016). Reactions of singlet oxygen with small biomolecules have been carried out. For
example, mechanisms have been studied such as the photooxidation of bilirubin and gua-
nosine and ascorbic acid derivatives. Examples of 'O, reactions in the organic chemistry
that are models of biological reactions are listed in Appendix A, where the rate constants
of small molecule reactions provide some insight to an overall photooxidative outcome in
a biological system.

Chemical trapping of 'O, is known in solution with biomolecules. The reactivity of 'O,
with biomolecules (e.g. membranes and lipids), amino acids (e.g. His, Trp, and Met), and
nucleic acids (e.g. guanosine) as model systems help in understanding the mechanism of tox-
iciy in PDT (Kanofsky 1989, Girotti 2001, McDonagh 2001, Cadet et al 2006, Itri et al 2014).
Reaction of !0, with methionine is an example of heteroatom oxidation in proteins (figure
6). For methionine, two moles of methionine sulfoxide form per mole of 'O, in the reaction
(7 = 2). Certain biomolecules such as amines and carotenes can serve as protection against
singlet oxygenation in converting 'O, to 30, by physical quenching (as was mentioned above).
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HoN S 03hv, Sy HoN S
—_—
CO,H CO,H

methionine sulfoxide

Figure 6. Reaction of methionine with 'O, to form sulfoxide.

3.2. Explicit model of type | and Il photodynamic interactions

For both type I and II primary photochemical reactions, as explained in section 3.1, a set of
coupled differential equations can be used to describe the PDT process (Finlay et al 2001,
Wang et al 2007, 2010, Zhu et al 2007, Weston and Patterson 2011)

dEii—O] = —ko[So] — kil O21([So] + 8) — kulO2 1([So] + &) + k[T 0a] + KilSil + kalTil,
(1n)

dg_fﬂ = —(ks+ ks) [Si] + ko [So], "

dgﬂ‘ — ko [T5] [°05] — ka[T1] + ks [$1] — ks [T [A] (3
3

d[d(t)2] = —Ssk [Ti] 021 — Siko [Ti] [P05] + k6 ['02] + T, o

d 1

Ll — ko [0a1 (101 + 8) + Saka 7] 1021 ks [02] — ko 4] 1031 ()

d[o," : 2

[dt2 1 — ki[O3 ")([So] + 8) + SklTI02] — knlAJ[O; ), (10

d[A 5’

Bl 2 41 1021~ k2 (41 10571~ ks 7] A1 4

These equations are based on the kinetic equations of the photochemical reactions using their
rate constants, ko, ..., kg (sce their definitions in table 1). Here, [So], [Si], and [T}] are the
ground, first excited singlet, and triplet photosensitizer concentrations respectively. [*0,] and
['0,] are the ground triplet and excited singlet state oxygen concentrations. [0 ] is the con-
centration of superoxide anion and represents the amounts of ROS in a type I mechanism. I'
and [A] are the oxygen supply rate and the concentration of ('O, and ROS) acceptors exclud-
ing the photosensitizer molecule. Depending on the methods used to determine the oxygen
supply rate in (14), the model is divided into microscopic and macroscopic models. In the
microscopic model, oxygen diffusion into capillaries, from capillaries into tissue, and diffu-
sion within tissue is used to calculate the I' term (Wang et al 2007). For more details on the
microscopic singlet oxygen model, see appendix B. Based on the kinetic equations of the
photochemical reactions, the oxygen supply term in a macroscopic theory can be expressed
as: (Hu er al 2005, Zhu et al 2007, 2015¢, Wang et al 2010)

R11



Phys. Med. Biol. 62 (2017) R1 Topical Review

[F0]
I'=gll- , 18
( [302]0] (%)

where g is the macroscopic maximum oxygen supply rate and [?0,]y is the initial tissue oxy-
gen concentration. In the macroscopic model, the I' term is assumed to be uniformly dis-
tributed everywhere without consideration of oxygen diffusion through the vasculature. The
functional form of equation (18) was validated using forward calculations with standard vas-
cular parameters (Zhu et al 2015c). Since the spatial scale of light transport is much larger
than the spatial scale of oxygen diffusion (~1 mm versus ~65 pm), the light fluence rate was
also set to be a constant within the vasculature model (Zhu and Liu 2013, Zhu et al 2015c¢).
This term ensures that the oxygen level does not exceed the initial value.

Due to the short lifetime and diffusion distance of 'O, in biological media, the term for the
photobleaching kinetics for ground state photosensitizer undergoing 'O,-mediated bleaching
has the low concentration correction constant, ¢ (Finlay et al 2004, Moan and Berg 1991).
10, is generated at the site of the parent photosensitizer molecule. Due to the short diffusion
distance (10-100nm (Moan and Berg 1991, Niedre et al 2002)), it has a higher probability
of reacting with the parent photosensitizer molecule than with adjacent photosensitizer mol-
ecules. For low photosensitizer concentrations, the rate of photobleaching depends only on the
rate of 'O, generation because the volume through which each '0, can diffuse before reacting
will contain exactly one photosensitizer molecule, independent of the total photosensitizer
concentration. In other words, 6 is the concentration of [Sy] where intermolecular distance is
equal to the 'O, diffusion distance (Dysart et al 2005). The value of this critical low photosen-
sitizer concentration is estimated to be between 3 and 3000 ;M (Dysart and Patterson 2005).
6 can be expressed as

5= 1
ANy (19
Here, d is the diffusion distance of 'O, in the environment of interest, which can be related
to 7A by d = (6D71A)"?, where D is the diffusion coefficient for 'O, and Ny is Avogadro’s
number (Dysart et al 2005).

If one only cares about the dynamic process of PDT in the time scale of a few seconds to
hours, then the time derivative in the right hand sides of equations (12), (13), (15) and (16)
can be set to zero because these processes are known to be very fast (~us or less). They can
then be simplified to

[S] = niqﬁ [Sol. (20)
D, 1 e
Tl= —————0¢[Sl,
(73] S RETS hycb[ ol Q1)
(o)1= €HTA3[3&¢ [Sol» (22)
[F0s1 +
[0,71= élfsm—ﬂ¢ [Sol, (23)
‘0.1 + 3
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d[So] [F0,] .
= - Sol + 8)B[S ,
dr [302] n /ng([ o] )¢ [So] — 77[302 d¢[ 0l (24)
d[302] — _ [302] ¢ [SO] (fII(O'H( [So] + 6) + k72 [A] TA) =+ gl) + g(] — &}
dr [F0.1 + 8 [F0,1 (1 = 0) ;
(25)
d[A] [F0s]
= - Sol (Epkrn [A]l Ta + &) —
dr [F05] + ﬁ¢[ ol Gz AT+ 6 7][%02] ﬁd)[ ol (26)

All of the parameters (&, &, &n, 0, 01, on, Ti, Ta, Ts) have been defined in table 2. In vivo,
(En(onu([Sol + ) + kn[AlTa) + &) in equation (25) and (& k72[A]lTA) + &) in equation (26)
can be replaced with (£ = & + &) since k7n[A]lTa &~ 1 and oy([So] + ) < 1. Utilizing equa-
tion (26) above, the amount of biological acceptor that has reacted with a reactive oxygen
species ([ROS];x) can be defined by the following

d[ROS], . [O1]
a o g

@ [So] — ¢>[ ol 27)

[302
where fis the fraction of ROS interacting with [A]. Here, the first term relates to the fraction
of acceptors that reacted due to (ROS)-mediated reactions, and the second term relates to the
fraction that reacts under hypoxic conditions or any other non-oxygen-mediated reactions,
such as triplet interactions. In cases where type II reactions dominate (Sa > Syand i = 0), the
reacted singlet oxygen (['0,]4) can be defined by

d'oaly f[ ¢ [S0] [302])
dr [0s1+6 )

The required photochemical parameters can be reduced from 11 (6, g, ko, ..., k3) to 6 (8, (3,
&, o, m, g), with some of the latter expressed as ratios of the former, if one is not interested in
modeling [S1], [T}], ['0,], and [O5]. The definitions for the photochemical parameters, &, J,
1, 6, and o, are shown in table 2, along with their relationships to the reaction rate constants.

The specific oxygen consumption rate, &, is the PDT oxygen consumption rate per light
fluence rate and photosensitizer concentration under the condition that there is an infinite 30,
supply. o, the specific photobleaching ratio, is the probability ratio of a ROS (including 'O,
molecule) to react with ground state photosensitizer compared to the ROS (including 'O,
molecule) reacting with a cellular target [A]. Notice that £ and o contains PDT photodynamic
interaction from both type I and type II and are not separated. 3 represents the ratio of the
monomolecular decay rate of the triplet state photosensitizer to the bimolecular rate of the
triplet photosensitizer quenching by 30, (Wang ez al 2010) and is called the oxygen quench-
ing threshold concentration (Zhu et al 2015a). 1 is the hypoxic consumption rate due to pho-
tobleaching reactions.

Table 2 also provides the definition of several other important photochemical parameters
for a specific photosensitizer. Fluorescence quantum yield (®5) of a compound is defined as
the fraction of molecules that emit a photon after direct excitation (Demas and Crosby 1971).
The triplet quantum yield (®,) describes the crossover efficiency for PS to go from the singlet
state to the triplet state via ISC (Bensasson ef al 1972). Similarly, the singlet oxygen quantum
yield (®,) is given as the efficiency to produce singlet oxygen from the triplet state of a photo-
sensitizer (Wilkinson ef al 1993). We have introduced superoxide anion quantum yield (®Pros)

(28)
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Table 2. Definition of some key parameters used in PDT modeling.

Symbol Definition
B (kM) Oxygen quenching threshold concentration m
6 (uM) Low concentration correction
2 1 1 . . . -
7 (em”mW=" 5™ M) Hypoxic reaction consumption rate @lﬁ%
v 2

E(em*mWlsh

Specific oxygen consumption rate
= §11 + fl = SA(DI% + SI(I)lhi,,

o(uM™) Specific photobleaching ratio o = (&oy + &o)/€
where o = klzTA and o= k]]TX
g(uMs Macroscopic maximum oxygen supply rate
e(em™! uM™h) Photosensitizer extinction coefficient
71 (8) Fluorescence lifetime
k3 + ks
A (8) i ifetime —— L
Singlet oxygen lifetime TS 28 + Ko AT
7 (8) i ifetime —— L
s Superoxide (ROS) lifetime o £ 5) oAl
7 (8) Triplet state lifetime ————————
ka+ ko[*02] + ks[A]
[A] (uM) Singlet oxygen receptors, considered a constant during
PDT because it is too large to be changed during PDT.
Sa Fraction of triplet-state photosensitizer->O, reactions
to produce 'O,
St Fraction of triplet-state photosensitizer reactions
involved in Type I reactions
SNL Fraction of triplet state photosensitizer reactions that
are non-luminescent Sa + Sy + Snp, = 1
Pa Singlet oxygen quantum yield Sy P kjk
3 5
Pros Superoxide anion quantum yield S P kjk
3 5
D¢ Fluorescence quantum yield P kj P k]j—“, where k3R 18
3 5 K3
fluorescence radiative decay rate between Sy and S,
O ; i ks
t Triplet quantum yield i

as the efficiency of producing superoxide anion from the triplet state of a photosensitizer. In
addition to the quantum yields, the fluorescence lifetime (7y), triplet lifetime (7y), and singlet
oxygen lifetime (74) represent mean lifetime of each state (i.e. of the fluorescent state, the
triplet state, and of singlet oxygen) (Strickler and Berg 1962). ¢ is the extinction coefficient
(cm™! uM~") defined as the absorption coefficient of the photosensitizer per concentration.

3.3. Relationship between rate parameters and the photochemical parameters

The rate constants for each of the reactions described previously can be determined by know-
ing some of the basic photochemical parameters mentioned before including the singlet
oxygen lifetime (74), the fluorescence lifetime (7y), the triplet lifetime (7y), and the triplet
quantum yield (®,), all of which are measureable quantities with existing technologies, which
is described in section 4.
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The photon absorption rate of the photosensitizer is given by knowing the extinction coef-
ficient (¢) of the photosensitizer, the fluence rate (¢ = 100 mW cm™"), Planck’s constant (%),
and the frequency of light used for treatment (/)

ko= 2.
0= (29)

The reaction rates involving 10, (k12, ke, k7) can be determined by measuring the singlet
oxygen lifetime. The relationship between 74 and the rate constants is the following

7a' = kia([Sol + 8) + ke + kna [A]. 30)

By varying the concentration of [Sy] in water in the absence of any singlet oxygen acceptors
([A] = 0), the plot of rgl versus [So] will yield a slope which will be k;, with a low concen-
tration correction (8) (Dysart and Patterson 2005, 2006). Furthermore the extrapolation to
[So]l = 0 will yield the value of k¢, provided that the values of ¢ and kj, are known. Adding
known concentrations of acceptors will allow for extrapolation of the value k7,. The value of
¢ can be found by investigating photobleaching kinetics and the steady-state singlet oxygen
concentration approximation (Dysart et al 2005).

Triplet quantum yield () and fluorescence decay time (7) can be used to calculate k3 and
ks with the following equations (Sterenborg and van Gemert 1996)

1
7= : 1
! ks + ks @D
1—®
ky = ——, (32)
Tt
O D
ks = ky = —t.
I I (33)

Rate reactions involving the triplet state photosensitizer (k, ku, ks), are related to the triplet
state lifetime by

7' = ks + ko [705] + kg [A]. (34)

Measurement of the ground state oxygen in a phantom will enable extrapolation of k, and k4
in a linear fit of Tfl versus [°0,] with the slope gives k, and extrapolation to P01 =0 gives
k4 + ks[A]. The oxygen quenching threshold concentration 3 (=(k4 + ks[A])/k) in the mac-
roscopic model can be calculated with the ratio of the two. kg can be determined as the slope
between Tt_l and [A]. All other photophysical parameters (&, o, 1) can be determined using the
rate, k; and the expression in table 2.

The quantum yield for generation of singlet oxygen () and superoxide anion (Prps) are
important quantities in determining the concentrations of the cytotoxic oxygen species. Both
are related to the photosensitizer triplet quantum yield by

DA = SAPy, 35)
Pros = S1Pr. (36)
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4. Experimental methods to determine the rate parameters

The advent of spectroscopic techniques to measure rate constants of photosensitization and
oxygenation has opened the way to the determination of their photochemical and photophysi-
cal parameters. This section describes a sampling of methods to determine experimental rate
parameters and other key photochemical factors. The scope of this review is focused mainly on
photochemical parameters in vivo. At present, this is only achievable through indirect methods
(section 4.2)—namely extrapolation of the parameters in table 2 by applying the macroscopic
model directly in in vivo systems. Most, if not all, of the direct methods to determine reaction
rates are limited to in vitro systems or in phantoms. We will point out the potential for direct
methods to in vivo system whenever possible. In addition, section 5 will point out the reaction
rates that are inferred from in vitro measurements and are expected to remain the same in vivo.

4.1. Direct methods

4.1.1. Absorption spectroscopy. Absorption spectroscopy refers to a technique that mea-
sures the absorption of radiation by a sample. By using a spectrophotometer and a white light
source, the extinction coefficient (£; units cm ™! /Lm’l) of a photosensitizer can be determined
by the Beer—Lambert law (Walsh 1955, Fuwa and Valle 1963)

A=—1In L = ele, 37)
0

where [ is the output light intensity, /y is the input light intensity, / is the path length of the
measured sample, and c is the concentration of the sample (in M). Typically, absorbance, A,
is defined for / = 1 cm). Notice our definition of extinction coefficient is log. based rather than
logjo based, the latter is often the case in the chemistry literature and cause ¢ to be decreased
by a factor of 2.30 (In10). Figure 7 shows an example of the wavelength dependence of ¢, also
called absorption spectra, for three PS (Photofrin, HPPH, and BPD). Using equation (29), the
value of ko can easily be determined from the measured ¢ and knowing the measured wave-
length, A, of the light (hv = hc A7h.

Transient absorption spectroscopy. Transient absorption spectroscopy is an extension of absorp-
tion spectroscopy. Also called pump-probe spectroscopy, the absorbance of a sample is measured
as a function of time after excitation by a flash of light, usually a pulsed laser, mainly to determine
the triplet lifetime of the sensitizer, [T] (Aveline et al 1998). This technique can be used to mea-
sure the singlet oxygen quantum yield (P ) for a photosensitizer utilizing another chemical with
known singlet oxygen quantum yields (Krieg and Redmond 1993, Krieg et al 1993).

4.1.2. Fluorescence spectroscopy. Photosensitizer fluorescence can be used to determine the
concentration ([Sp]) of photosensitizer present both in vivo and in vitro (Konig et al 1993, Rob-
inson et al 1998). However, fluorescence signal in vivo is affected by the tissue optical proper-
ties of scattering and absorption. The reduction of the fluorescence signal due to absorption
can be accounted for by incorporating an empirical correction factor based on tissue optical
properties (Finlay et al 2006). Many commonly used PS produce unique fluorescence spectra
when excited at a certain wavelength. Figure 7 shows an example of three PS (Photofrin,
HPPH, and BPD) and their fluorescence spectra. Such emission spectra, corrected for instru-
ment response and tissue optical properties, can be analyzed as a linear combination of fluo-
rescence basis spectra using a singular value decomposition (SVD) fitting algorithm (Finlay
et al 2001). Fluorescence spectra from phantoms with known photosensitizer concentrations
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Figure 7. Fluorescence spectra (solid line) and absorption spectra (dashed line) of (a)
Photofrin in PBS, (b) BPD in PBS, and (c) HPPH in water. Spectra are taken from
Aveline et al (1994), Kim et al (2007), and Wezgowiec et al (2013) with permission. The
absorption curve for (a) Photofrin above 480 nm has been multiplied by 10x for clarity.

can be used to determine the correction factor for fluorescence due to tissue optical properties
as well as the absolute value of [Sy] in an in vivo environment (Finlay et al 2006).

Fluorescence lifetime spectroscopy and imaging (FLI). Time-resolved fluorescence decay
measurements can be used to study details about the structure and dynamics of macromolecules.

R17



Phys. Med. Biol. 62 (2017) R1 Topical Review

These measurements are commonly performed with microsecond to picosecond laser sources
with high-speed photodetectors (Lakowicz et al 1992).

The fluorescence lifetime, ¢, of PS can be determined from time-gated spectra along with
single photon counting, using a picosecond to microsecond pulsed diode laser for fluorescence
excitation. Specific wavelength ranges can be selected to plot the fluorescence exponential
decay curve (e~ kK1) to yield the decay constant (k3 + ks), which can be used to calculate
7t = 1/(ks + ks) (Kress et al 2003).

Laser-induced optoacoustic calorimetry (LIOAC). Triplet quantum yields, ®;, can be obtained
by LIOAC and oxygen fluorescence quenching. After a laser pulsed excitation at the absorp-
tion wavelength (e.g. 532 nm) of the photosensitizer, radiationless relaxation processes of the
intermediate states (e.g. Sy, 71, ...) causes rapid deposition of heat in the sample, giving rise to
acoustic waves, the magnitude of which are directly proportional to the heat evolved and can
be detected by a piezoelectric transducer (Aveline et al 1994, Braslavsky and Heibel 1992).
The absorbed energy deposited as heat in the sample within the detection window, aEyps can
be used to calculate the fluorescence and triplet quantum yield using (Aveline et al 1994)

(1 - a)Eabs = (DfEs + CI)tEta (38)

where Eg and E; are the singlet state and triplet state energy gaps to the ground state, respec-
tively. Experimentally, a is determined by comparing the calorimetric energy balance for the
sample in question to an ideal reference system, which has a known o = 1 (Aveline et al 1994).

4.1.3. Phosphorescence spectroscopy. Phosphorescence is similar to fluorescence in that
absorbed energy by a substance is released in the form of light. However, phosphorescence
occurs on a longer time scale than fluorescence. Besides the decays from monomol 'O, to
30, + hv at 1270nm (22 keal mol ), dimol singlet oxygen molecules (2 '0,) can also decay
to 2 moles 30, + hv at 634nm (44 kcal mol ') and 701 nm (Khan and Kasha 1963, 1964,
1970, Arnold et al 1964, 1965). The latter (634 nm and/or 701 nm) is readily observed in the
gas phase but is often not detected in the solution due to other optical signals at these wave-
lengths. The detection of 'O, luminescence at 1270nm is potentially difficult in vivo because
of the short lifetime of '0,.

Singlet oxygen luminescence (SOL) detection (or laser flash photolysis). SOLD (or laser
flash photolysis) is a standard technique for identification of short-lived, excited states of PS
and characterization of their reactions (Krasnovskii 1976, Khan and Kasha 1979, Hurst et al
1982). It is a popular and precise technique used to directly measure kg and k7, where the pho-
tosensitizer solution of the substrate is saturated with O, and irradiated with laser at a specific
absorption wavelength. The resulting phosphorescence of 'O, at 1270nm as a function of time
is measured with a time-correlated detector (Kanofsky 1990). With the time-correlated single
photon counting (TCSPC) module, phosphorescence decay characteristics can be measured
with a time resolution of < 100ps and a spatial resolution in the subcellular region. With a
high pulse repetition rate (40 MHz), the total acquisition time is short (less than 1s) for each
fluorescence decay curve (Kress et al 2003). Production of 'O, by laser excitation occurs in less
than 2 pus, its decay is approximated by equations (39) and (40) (derived from equation (15))
and a first-order exponential decay of 'O, is given in equation (41). A Stern—Volmer plot of
concentration of substrate [A] versus 1/7a (Where 74 is the experimentally measured singlet
oxygen lifetime), gives a straight line with the slope equal to k7, and the y-intercept equal to kg

!
_ 40l 1 ['0,] (39)
dr TA
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['0,] = ['0s]y e ™ (40)

7o' = ke + kn [A] = kq + (kq + ;) [A]. (41)

The rate constants for oxidized product formation, k; are obtained by a competition technique
reported by Higgins et al (1968) where the substrate solution containing photosensitizer and an
alkene for comparative trapping to deduce the contribution from physical quenching kg, can be
obtained by difference using equation(41) (Clennan et al 1995, Celaje et al 2011). The variable
«in equation (41) is a function of the product chemical composition (see figure 6, v = 2). Unlike
unsaturated compounds such as alkenes, amines and polyenes are effective singlet oxygen phys-
ical quenchers and protect against photooxygenation (Wessels and Rodgers 1995).

Singlet oxygen quantum yields ($a) can be determined from the phosphorescence inten-
sity extrapolated back to zero time. These values can be recorded as a function of laser energy
and of the absorbance for the sample and reference PS. Linear plots of the energy at each
absorbance can be plotted (with the absorption factor) to produce slopes equivalent to the
quantum yield (Marti et al 2000).

Measurement of this near-infrared (NIR) luminescence of singlet oxygen in biological
environments is difficult due to the short 'O, lifetime (which can be less than the triplet-state
PS lifetime) and its low quantum yield for phosphorescence. However, this can be achieved
using a NTR-sensitive photomultiplier tube. Time-resolved analysis shows that 'O, lifetime is
reduced (1A = 0.03-0.18 ws) in vivo compared to lifetime in vitro (To = 3.0 = 0.3 us). This
may be due to the protein binding to 'O, in cellular environments (Niedre et al 2002). The
photomultiplier tube must be sufficiently fast (with a rise time of ~3 ns) for phosphorescence
single-photon counting, and it must have a broad, flat spectral response that enables spectral
resolution of the 'O, signal (Jarvi et al 2006).

The shorter lifetime has been attributed to the rapid quenching of 'O, by biomolecules,
combined with a lack of adequately sensitive detectors at NIR wavelengths, since the lumines-
cence emission is proportional to the lifetime. When exchanging the H,O solvent for D,0, the
lifetime of singlet oxygen increases by 20-fold. The 7a in D,0 is 69 us at 20 °C and in H,O
3.5 ps at 20 °C (Ogilby and Foote 1983, Wilkinson et al 1993, Jensen et al 2010).

The triplet-state lifetime is highly dependent on the molecular oxygen concentration
according to a Stern—Volmer relationship

7' = kar + kang + k2 ['02] = kg + ko [J05] (42)

where ksr and kgngr are the radiative and nonradiative photosensitizer triplet state decay rate
constants. The changes in triplet state lifetime (7) can be used to determine changes in [?0,],
given k; and k4 is known. In biological systems, 7; > 7a so that the exponential decay of the
singlet oxygen luminescence curves is governed by 7 (Shonat and Kight 2003, Poole ef al
2004, Jarvi et al 2006).

Most singlet oxygen luminescence dosimetry (SOLD) studies have been done on micro-
spheres of cells. Detection of SOL from a murine tumor using Photofrin and ATX-S10NAa(II)
has been reported (Hirano et al 2002). The full luminescence spectrum can be measured by
placing a monochromator in front of the detector.

The great impact of SOLD techniques comes with reports that show detection of 'O, in
complex biological systems directly. The integrated detected 'O, luminescence counts is pro-
portional to the total amount of 'O, created in the target during PDT and thus is predictive of
PDT response (Jarvi et al 2006). Ultimately it is the cumulative 'O, dose that determines the
biological effect. Furthermore, changes in the effective PDT dose due to oxygen depletion or
due to photosensitizer photobleaching can be evaluated with time-resolved SOL measurements.
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4.2. Indirect methods

Singlet oxygen explicit dosimetry (SOED) methods have been developed to calculate the
reacted singlet oxygen, '[O,];x, in vivo and in vitro for type T PS. The main cytotoxic agent in
type I PDT has been attributed to 'O, (Weishaupt et al 1976). PDT efficacy can be correlated
to the calculated '[Ox],y, thus making SOED an effective method of dosimetry for in vivo stud-
ies as well as in clinical settings. The methodology for SOED for type II photosensitizer can
be expanded for ROS involving type I PS, even though it has not been used in existing studies.
However, the parameters obtained should include photodynamic action from both type I and
type II even though singlet oxygen is predominant for the type II PS studied.

4.2.1. SOED in vitro and in phantoms. SOED methods have been used in vitro to determine
photochemical parameters in table 2 (53, 6, &, and o) (Patterson et al 1990, Foster et al 1991,
1993, Nichols and Foster 1994, Georgakoudi et al 1997, Dysart and Patterson 2006). Spher-
oids of cell have been used to model PDT-induced oxygen depletion using equations very
similar to those of section 3.2. Cell suspensions in cuvettes have been irradiated to investigate
PDT in vitro and light fluence dependent effects (Sporn and Foster 1992). Cell survival assays
arc used as an endpoint to assess fluorescence-based singlet oxygen dose metrics (Dysart and
Patterson 2006). In phantoms, singlet oxygen can be trapped by various compounds and thus
detected indirectly. Most common compounds for 'O, are SOSG and MNR as described in
section 4.3.

Spheroid cell survival assays have been used to determine the threshold dose of singlet
oxygen for necrosis as well as photochemical parameters (3, 6, £, and o) (Foster et al 1993,
Georgakoudi et al 1997). Monolayers of cell cultures are initiated into spheroids ~500 pm
in diameter. Treated spheroids are dissociated and the fraction of cells that survive treatment
is determined by a colony formation assay (Foster et al 1993, Georgakoudi et al 1997). An
expression that relates the experimentally determined spheroid cell surviving fraction to the
total rate of oxygen consumption (the sum of both metabolic oxygen consumption rate, which
is assumed to be unaffected by PDT, and the oxygen consumption rate due to PDT processes)
is used to determine a coefficient of PDT-induced oxygen consumption. Furthermore, a thresh-
old dose of 'O, can be determined for cell spheroids, where once this dose has been deliv-
ered to the cells within the spheroid shell and 30, has been depleted, continued irradiation at
the same fluence rate will not result in significant additional cell killing (Foster et al 1993).
Measurements of >0, depletion and a knowledge of 30, diffusion in cells and consumption
due to PDT can be used to describe >0, transport in a cell spheroid system. This can further be
used to calculate the amount and distribution of 'O, molecules in a multicell-spheroid model
during PDT (Nichols and Foster 1994).

Oxygen consumption and photobleaching studies with spheroids cells have been used to
determine the probability of 'O, reaction with ground state photosensitizer, o (k\/k7[A]) as
well as the ratio of k4/ky (). Using measurements from oxygen microelectrodes, the fol-
lowing equation for oxygen consumption was fit to determine o (Georgakoudi et al 1997,
Georgakoudi and Foster 1998)

dr’ ’ 1d’0y]
[On] ()= 5[50]0¢([[OA]6XP(—UI) L0 (t)dr ) (43)

dr 0.0(1) + 8 dr

The left hand side of equation (43) is the rate of photodynamic oxygen consumption and
&[Solo¢ is the maximum or initial rate of photodynamic oxygen consumption. In this spheroid
model, the oxygen perfusion rate (g) present in equation (25) is set to 0 since no vascula-
ture is present. Georgakoudi et al found that o is 90 + 15.9 M~! for ALA-induced PpIX
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photobleaching and 76 4 12 M ! for Photofrin (Georgakoudi et al 1997) assuming a uni-
form distribution of photosensitizer. Spheroid cells and oxygen microelectrode measure-
ments have also been used to investigate J. Mitra et al have found that 3 is 8.7 + 2.9 uM
for mTHPC-mediated PDT and ¢ is 29.7 + 4.6 M~ (Mitra and Foster 2005). Reanalysis of
Photofrin data with the observation of Photofrin’s nonuniform distribution yielded values of
B=12.1+3.4 uM and o = 56.5 + 8.6 M~! (Mitra and Foster 2005), which is not remark-
ably different from G = 11.9 + 2.2 uM as determined with an assumed uniform distribution
of Photofrin (Georgakoudi et al 1997). The threshold dose of 'O, in spheroid cells using
Photofrin-mediated PDT was found to be 11.9 4+ 3.5mM (Mitra and Foster 2005).

4.2.2. SOED in vivo. For SOED, it is critical to know the photochemical parameters, (3,
&, o, 6, and g), and the singlet oxygen threshold dose, [IOZ]rX,Sh. These parameters can be
determined by performing PDT on a mouse model (Wang et al 2010, Liang et al 2012,
Liu et al 2013, 2014, McMillan et al 2013, Zhu and Liu 2013, Kim et al 2014a, 2016, 2015,
Zhu et al 2014, 2007, 2015a, Penjweini ef al 2015a). Tumors are grown on mice and after
injection with photosensitizer, treatment is delivered interstitially using a cylindrically diffus-
ing fiber inserted inside the tumor. Partial treatment of the tumor is performed using various
light doses and fluence rates. After treatment, the tumors are sectioned perpendicular to the
linear treatment and stained with hematoxylin and eosin (H & E) to assess the necrotic area.
Necrotic area is then used to calculate necrosis radius (A = 7%, where A is the area and r is
the necrosis radius). PDT-induced necrosis is determined by subtracting the radius of necrosis
from control mice with no PDT treatment. Necrosis radius is then used with the spatially- and
temporally-resolved calculated 110, profile using the macroscopic model equations from
section 3.2. Experimentally obtained data is used for the model equations. Light fluence distri-
bution inside the tumor is calculated by measuring the absorption and scattering optical proper-
ties (u, and ,ug) (Zhu et al 2005). Photosensitizer concentration inside the tumor is determined
using fluorescence spectra that are corrected for optical property effect (Finlay et al 2001). The
correction factor is determined prior to experimentation in phantom studies with known photo-
sensitizer concentrations and varying optical properties (Kim ef al 2014a, 2015).

The model parameters are then varied globally so that the ['Os]ix for each mouse at the
necrosis radius is close to the ‘apparent ['O,],x¢’". This quantity is then the singlet oxygen
threshold dose. An initial guess for these model parameters must be provided for the fitting
routine. Initial in vivo model parameters have been published previously (Zhu et al 2007,
2014, 2015a, Wang et al 2010, Liang et al 2012, Liu et al 2013, 2014, McMillan et al 2013,
Zhu and Liu 2013, Kim et al 2014a, 2016, 2015; Penjweini et al 2015a). Threshold sin-
glet oxygen doses (['Os],n) in vivo using mouse models were fitted to be 0.56 & 0.26 mM,
0.72 £ 0.21mM, and 0.60 £ 0.18mM for Photofrin, BPD, and HPPH respectively (Wang
et al 2010, McMillan et al 2013, Kim et al 2014a, 2016, 2015, Liu et al 2014, Zhu et al
2015a). The other parameters are summarized in table 5.

4.3. Other methods

In addition to the experimental methods mentioned in this section, there are other techniques
that can be used to investigate the presence of the reactive oxygen species. These methods
have been mostly used in vitro; however, some may be applicable in in vivo systems as well.
These methods involve fluorescent markers and analytical methods.

Several methods are developed to detect the presence of singlet oxygen and/or HO". Singlet
oxygen can be detected from dioxetanes from [2 + 2] cycloadditions, endoperoxides from
[2 + 4] cycloadditions, and allylic hydroperoxides from ‘ene’ reactions (Clennan and Foote
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1992, Aubry et al 2003). Simple alkenes often take up 1 equivalent of '0,. Tandem 'O, reac-
tions can take place in polyunsaturated compound, there are also instances where bisperoxides
rearrange to spiro compounds. Peroxides can also be generated through type I reaction that do
not involve singlet oxygen, for example, there are electron transfer photooxidation reactions
with 9-mesityl-10-methylacridinium ion (Kotani et al 2004, Ohkubo et al 2005). It may be
noted that ene-derived hydroperoxides and cycloaddition-derived endoperoxides have a toxic-
ity of their own that is separate of singlet oxygen’s toxicity (Ouedraogo and Redmond 2003,
Chakraborty et al 2009).

Aromatic compounds such as 9,10-disubstituted anthracenes can trap 'O, and be detected
by UV-vis spectroscopy (Ragas et al 2009, Kim et al 2014b, Pedersen et al 2014). Another
trapping reaction is 9,10-anthracene-9,10-endoperoxide dipropionate dianion that arises from
a[2 + 4] cycloaddition of 'O, with 9,10-anthracene dipropionate dianion at pH = 10 in water
detected by UV—visible spectroscopy.

Analytical methods such as low-temperature NMR spectroscopy can be used to detect
unstable peroxide compounds in reaction mixtures. For example, dioxetane 3C NMR signals
are fairly characteristic (Baumstark 1988). Electron-rich olefins such as alkoxy-substituted
alkenes react with singlet oxygen and form dioxetanes. Decomposition of dioxetanes is often
accompanied by chemiluminescence due to a fragmented excited carbonyl compound (Adam
and Trofimov 2006, Turro et al 2010).

Singlet oxygen sensor green (SOSG) is a '0,-specific fluorescent probe reagent that has
been used to quantitatively measure 'O, that has been produced by determining the reaction
rate of SOSG with '0,. SOSG is a fluorescein—anthracene die that fluoresces after its reac-
tion with '0,. The endoperoxide product from a [2 + 4] cycloaddition of 10, closes off the
FRET quenching channel of precursor SOSG (Ragas et al 2009, Gollmer et al 2011). SOSG
reacts with 'O; to produce SOSG endoperoxides, which emits a strong fluorescence signal
at 531 nm. ® has also been determined using SOSG for a porphyrin-based photosensitizer,
hematoporphyrin monomethyl ether (Lin et al 2013).

Fluorescence probes can also be used to detect highly ROS such as hydroxyl radical (HO")
and reactive intermediates of peroxidase. 2-[6-(4’-hydroxy)phenoxy-3H-xanthen-3-on-9-yl]
benzoic acid (HPF) and 2-[6-(4’-amino)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid (APF) are
two examples of such fluorescent probes (Setsukinai et al 2003). Both probes are reported to be
cell-permeable, relatively insensitive to superoxide anion, nitric oxide, 10,, and alkyl peroxides
(Price et al 2009, Price et al 2013). APF is ~5 times more fluorescent during HO" formation
than HPF (Price ef al 2009). Other fluorescent probes of hydroxyl radical include coumarin- and
rhodamine nitroxide-based compounds (Yuan et al 2010, Yapici et al 2012, Meng et al 2014).

Table 3 summarizes all methods available to determine rate constants and other photo-
chemical parameters, along with whether or not the technique has been applied in an in vivo
model. The methods mentioned in this section can be useful tools to determine in vivo and
in vitro photochemical parameters as well as characteristics of reactive species relevant for
a specific photosensitizer. Based on this review, we consider the technique for fluorescence
and SOLD-based lifetime (7%, 7, TA) measurements to be mature and able to accurately deter-
mine rate constants (ky, ko, k3 + ks, k4, ke, k7) as described in section 3.3. To determine k3
and ks, it is important to determine the triplet quantum yield, ®;, which can be determined
using LIOAC. We also consider absorption measurements to be very mature and accurately
determines the extinction coefficient € and ko. However, the technique to determine the singlet
oxygen quantum yield, @, is still dependent on the known reference singlet oxygen quantum
yield, and thus may contain errors. Only indirect methods are available to determine ® A value
in vivo, which can be substantially different from the in vitro value.
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Table 3. Summary of the experimental methods described in this section.

Method

Direct methods

Continuous wave

Transient/lifetime

References

Absorption

Fluorescence

Phosphorescence

Absorption
spectroscopy
(ko, €)

(in vivolin vitro)

Fluorescence
spectroscopy
([So]) (in vivolin
Vitro)

Phosphorescence
spectroscopy

Transient absorption
spectroscopy (Pa)
(in vitro mostly)

FLI, FLIM (7, k3, ks)
(in vitro mostly)

LIOAC (®y)

SOL detection (7, Ta,
k1, ko, k4, ke, k7) (in vitro
mostly) phosphorescence
spectroscopy ([*0,])

(in vivolin vitro)

Walsh (1955), Fuwa and Valle
(1963), Chattopadhyay et al
(1984), Krieg and Redmond
(1993), Krieg et al (1993) and
Aveline et al (1998)
Lakowicz et al (1992), Finlay
et al (2001) and Kress et al
(2003)

Aveline et al (1994)

Khan and Kasha (1963, 1964,
1970, 1979), Arnold et al (1965),
Krasnovskii (1976), Hurst et al
(1982), Ogilby and Foote (1983),
Kanofsky (1990), Wilkinson

et al (1993), Clennan et al
(1995), Wessels and Rodgers
(1995), Marti et al (2000),
Hirano et al (2002), Niedre

et al (2002), Kress et al (2003),
Shonat and Kight (2003), Poole
et al (2004), Jarvi et al (20006),
Jensen ef al (2010) and Celaje
etal (2011)

Indirect methods

SOED

In vitro studies (&, o, (3, 6)

In vivo studies (&, o, 3, 6, g)

Patterson et al (1990), Foster

et al (1991, 1993), Nichols and
Foster (1994), Georgakoudi et al
(1997) and Dysart and Patterson
(2006)

Zhu et al (2007, 2014, 2015a),
Wang et al (2010), Liang et al
(2012), Liu et al (2013, 2014),
McMillan et al (2013), Zhu and
Liu (2013), Kim er al (2014a,
2016, 2015) and Penjweini et al
(2015a)

Other methods

Singlet oxygen trapping (['0,])

Kotani er al (2004), Ohkubo

et al (2005), Ragas et al (2009),
Pedersen et al (2014) and Kim
et al (2014b)

NMR spectroscopy ('o.D Baumstark (1988)
SOSG (['0,], ®a) Lin et al (2013)
APF, HPF ([HO']) Setsukinai er al (2003)
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5. A review of existing values of photochemical parameters

PS are normally delivered systemically or topically in PDT. The systemic administration
involves either oral administration or intravenous injection so that the drug will be circu-
lated through the whole body system, and preferentially more drug will be localized in the
target site than in others. An ideal photosensitizer should have low or no toxicities and a
fast clearance process. Some systemically delivered PS are benzoporphyrin derivative (BPD),
Photofrin, and HPPH (2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a). In contrast with
the systemic administration, ALA, a pro-drug that reacts with heme to generate the photo-
sensitizer protoporphyrin IX (PpIX), can also be applied topically to perform more localized
delivery, which is commonly used for skin treatment. Table 4 summarizes common PS that
are currently used in various stages of clinical trials. Note that most of the PS are of type II
category, with the exception of Tookad (WST-09) and WST-11, which are type I PS (Vakrat-
Haglili et al 2005, Ashur et al 2009).

There are several PS that have been approved for standard clinical use by the US Food
and Drug Administration (FDA) or the European Medicines Agency (EMA) (Huang 2005,
Agostinis et al 2011). ALA (a pro-drug that produces PpIX) was approved for the treat-
ment of actinic keratoses in 1999 by the FDA under the trade name Levulan (Jeffes 2002)
and in 2009 and 2011 by the EMA under the trade name Alacare and Ameluz, respec-
tively. Similar photosensitizer derivatives were developed to also produce PpIX: methyl-
ALA was approved by the FDA in 2004 for the treatment of non-hyperkeratotic actinic
keratoses, and hexyl-ALA was approved in Europe in 2006 for the diagnosis of bladder
cancer under the trade name Hexvix (Lapini et al 2012). In 2000, the FDA approved use
of BPD in the treatment of age-related macular degeneration (Mody 2000). mTHPC was
approved by the EMA for treatment of head and neck squamous cell carcinomas. Photofrin
was approved by the FDA for multiple treatment sites. It was approved for microinvasive
endobronchial non-small cell lung cancer in 1998 and high-grade dysplasia in Barrett’s
esophagus in 2003.

The photochemical parameters, 3, 6, &, o, and g, can be determined using indirect methods
mentioned previously (table 3) (Mitra and Foster 2005, Wang et al 2010, Liu et al 2013).
Currently only a subset of PS in table 5 (Photofrin, ALA, BPD, HPPH, mTHPC) have been
studied. Every photosensitizer should undergo studies to determine the photochemical param-
eters so that they may be used for modeling the PDT process as well as dosimetry. The funda-
mental photophysical parameters of most, if not all, PS are fairly well established (e.g. €, 7y, 7),
and they can be used to determine some parameters, such as &, for PS. However, indirect meth-
ods in vivo can only be used to determine the ratios of rate constants (k;’s, where i = 1-8),
thus additional measurements are necessary to determine individual reaction rate constants.
In this review, all parameters were determined for FDA or EMA approved PS (table 5(a))
as well as some others (table 5(b)). Table 5 summarizes the known values and references for
the PS listed in table 4. Notice that this is a very incomplete list and includes only the most
commonly and clinically used PS.

The photochemical parameters for most PS were determined in vitro. However, it is reason-
able to expect that they will largely remain the same in in vivo systems (such as €, ko, k3, and ks).
Thus, their values can be determined in vitro or in vivo for most PS. Some of the parameters
(ke, k72) are photosensitizer independent since they are properties of either 'O, or other ROS
and they should behave the same. Assumptions can be made that they are the same for all type
IT PS. Two of the PS summarized in this review are of type I, but it can be assumed that the
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corresponding parameters (ke, k71, kg) are dependent only on the microenvironment and thus
are approximately the same for different type I PS. Some photochemical parameters (ky, k2, k4)
are more environmentally dependent. Therefore it can be expected that the values for such
parameters would be different between in vivo and in vitro conditions. One reason for this dif-
ference is due to aggregation which leads to photosensitizer—photosensitizer photoreactions.
It was found that the ratio 3 was roughly the same for all PS, which can help to estimate this
value for unknown PS (Mitra and Foster 2005).

This review of photochemical parameters indicates that some of the k;’s (ka, ka, ke, k7) are
roughly of the same order of magnitude for all PS. Some of the k;’s (k3, ks) are the same order
of magnitude for all type I or type II PS, but otherwise differ between the two types. Thus we
believe they can be used to identify whether a particular photosensitizer will have type I or
type II tendencies.

There are quite a number of photochemical parameters that are still unknown (see table 5
for values either missing (‘—’) or estimated in parenthesis). Further studies are necessary
to determine these values in vivo directly. It is possible to expand the technology for direct
method (table 3) to be used in vivo.

For BPD, the extinction coefficient (¢) was found to be 0.0783 cm ™! xM~! using absorp-
tion spectroscopy (Aveline ef al 1994, Zhu et al 2014). The value of ko was found at a fluence
of 100 mW cm 2 using equation (29) and ¢. kj, was found by using the approximation kj, ~
on - k7n[A]l, where oy is the specific photobleaching ratio determined in vivo using
SOED in section 4.2.2. k, was found to be 3 x 103 uM~! s~! using the observed tri-
plet lifetime (7;) in the presence and absence of 30, (equation (34)) (Aveline
et al 1994). Using this value, and the measured value for 3 in vivo, k4 can be
found to be ky=fFxky =119 uM)x 3 x 10> pM~! s =3.6x10* s~
The values for k3 and ks were found by using the fluorescence lifetime (7¢) and the triplet
quantum yield (®,) and equations (31)—(33). The value of 7 was taken from literature
Aveline et al using a time-correlated single photon counting method (Aveline et al 1994).
The value of ®, was obtained from literature using LIOAC (see table 3 and section 4) (Aveline
et al 1994). The resulting values were k3 = (1 — ®)/7; = (1 — 0.79)/(5.2 x 1077 s) =
4.04 x 107 sV and ks = @7 = 0.79/5.2 x 107 s = 1.52 x 107 s~ !. The singlet oxygen
lifetime (7A) in water with no acceptors to react with 10, can be used with equation (30)
to obtain the value of k¢. which is only a property of singlet oxygen and should be photo-
sensitizer independent. Therefore, for all type II PS, k¢ = TZI =@ us) '=33x10s"!
(Zhu et al 2015a). The value of k7,[A] in vivo is only a property of singlet oxygen and is
thus assumed to be the same for all type II PS. By using the value of 74 in tissue (0.1 ps)
and the known value for k¢, k70 = T;l — ks = (0.1 pus)™' — (33 x10°s7H) =1 x 107" s7!
(Dysart et al 2005). Since BPD is a type II photosensitizer, there is no significant contrib-
ution of type I reactions between [7] and [A] so kg[A] and 1 were assumed to be 0. The val-
ues of &, o, and g were found in vivo using the SOED method (McMillan et al 2013, Kim
et al 2014a, 2016, Zhu et al 2015a). Details for the SOED method are in section 4.2.2. The
low concentration correction, 6, was assumed to be the same for BPD as that of Photofrin.
Further experiments are needed to confirm this value for BPD. The fraction of 'O, produc-
ing reactions between [T;] and 30, was determined using the definition of £ in table 2:
Sa = E®de x (hv) = (51 x 103 em?>mW~'s71/(0.79)/(0.0312 uM ' ecm ™) x (6.022 x
10 em?uM ™1 x (2.72 x 10719 mW s) = 0.144.
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6. Conclusions

During PDT, energy from the triplet-state photosensitizer excited via the absorption of light
is transferred to ground-state oxygen, which produces ROS. Mathematical models have been
developed to simulate the process of PDT for both type I and II PS. These models use a set
of differential equations describing the major photochemical reaction pathways in PDT to
calculate temporal and spatial distributions of singlet oxygen, ground-state oxygen, and the
photosensitizer.

This review summarizes known photochemical parameters, methods to determine the rate
constants, and other key photochemical parameters (some of which are in vivo). It is found
that many fundamental rate constant values are unavailable for many common PS, and exper-
imental efforts to determine these parameters are required in order to perform explicit dosim-
etry of ROS.

There is great potential for future work to determine in vivo photochemical rate parameters
for use in PDT modeling and dosimetry. However, further studies are needed to determine
these parameters in vivo. For a particular photosensitizer to be studied in pre-clinical and
clinical dosimetry studies, it is important to have the complete set of photophysical and pho-
tochemical parameters.
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Appendix A. Biological and other examples of singlet oxygen reactions

Biological compounds such as imidazole and guanine can react with 'O, by [2 + 4] cyclo-
addition to form endoperoxide, which can be characterized at low temperature (figure A1)
(Sheu and Foote 1993). DNA base pairs can also undergo tandem reactions with 'O, to form
spirodiimidohydantoin species (figure A2) (Hickerson et al 1999, McCallum et al 2004,
Di Mascio et al 2014). Conjugated dienes can also undergo tandem reactions with 'O, to form
allylic hydroperoxides followed by 1,4-endoperoxides (figure A3). These kinds of conjugated
alkenes are common in natural products and lipids in biological systems (Blay et al 2005).

Singlet oxygen reacts with electron-rich alkene by [2 + 2] cycloadditions to give mono
and bis bicyclic dioxetanes that can chemiluminesce upon decomposition (figure A4) (Zaklika
et al 1978, Adam et al 1979). The decomposition of endoperoxide can provide for a chemical
source of 10, e.g., naphthalene and anthracene (figure A5) (Wasserman and Larsen 1972,
Fudickar and Linker 2014, Klaper and Linker 2015). Photosensitizers such as dyes, phar-
maceuticals, and cosmetics can serve as photodynamic agents and produce 'O». A variety of
chromophore-rich natural products can sensitize organisms to damage by singlet oxygenation,
including chlorophyll, metal-less porphyrins, flavins, polyacetylenes, pigments, and mold tox-
ins (Wasserman and Murray 1979).
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Figure A1l Reaction of imidazole (top) and guanine (bottom) with 'O, to
form endoperoxides. tetra-tBuPc = tetra-tert-butylphthalocyanines and TPP =
tetraphenylporphyrin  photosensitizers, CD,Cl, = chloroform-d, and CFCl; =
trichlorofluoromethane solvent.
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Figure A2. Reaction of DNA basepairs with 'O, to form spirodiimidohydantoin.
TPP = tetraphenylporphyrin photosensitizer and CD,Cl, = chloroform-d, solvent.
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Figure A3. Reaction of conjugated dienes with 'O, to form allylic hydroperoxides,

followed by 1,4-endoperoxides. =~ MB = methylene blue photosensitizer,
CD,Cl, = chloroform-d, solvent and PPh; = triphenylphosphine.
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Figure A4. Top: reaction of alkene with 'O, to form bicyclic dioxetanes. Bottom:
Reaction of bisdioxane with !0, to form bisdioxefane. RB-(P)=rose bengal
photosensitizer immobilized on polymer support and CH,Cl, = dichloromethane

solvent.
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Figure A5. Reaction of acene with 'O, to form endoperoxide. MB = methylene blue
photosensitizer and CH,Cl, = dichloromethane solvent.

Appendix B. Microscopic singlet oxygen model

With the microscopic singlet oxygen model, the tumor is assumed to have uniformly dis-
tributed capillaries aligned parallel to the linear light source. The inter-capillary distance
between two adjacent capillaries is large enough so that each one can supply oxygen only to
its immediate, concentric surrounding tissue. A Krogh cylinder model can be adapted for a
single capillary and its surrounding tissue. The 3D Krogh model can be simplified into a 2D,
cylindrically symmetric model. Under normal situations, the red blood cell (RBC) contains
hemoglobin, which is where hemoglobin saturation and desaturation occurs. After oxygen
unloads from oxy-hemoglobin, it will diffuse into the blood through the RBC membrane and
into the tissue. The microscopic model assumes that there is no oxygen diffusion barrier in
the RBC membrane, and that the distribution of hemoglobin within the capillary is uniform.
Given these assumptions, the time-dependent governing equations for 0, and hemoglobin
transport inside the capillary are given by (Zhu et al 2015c¢)

oP

e = acD. VPP —v-a, VP I Ty, (B.1)
CH% = CuDy V2 Sa — v - Gy V Sa — Ty, (B.2)
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where Sa denotes the hemoglobin oxygen saturation describing the percentage of hemoglo-
bin oxygen concentration to the total hemoglobin concentration. I'ox is the ‘reaction’ term
representing the 20, loading/unloading from deoxyhemoglobin/oxyhemoglobin. D, and Dy,
represent the diffusion coefficients of >0, and hemoglobin in the capillary respectively. o is
the solubility of 0, in plasma and v is the blood velocity in the capillary. The concentration
of 30, is expressed using the partial pressure (P) of 05 and the oxygen solubility coefficient
(a) based on

[’0,] = aP. (B.3)

Oxygen concentration can be expressed using oxygen partial pressure. The oxygen supply
term (I") for equation (18) is given by

[f0]

I'= DV ['0y] - gp———,
[F02] + By

(B.4)
where g is the maximum metabolic oxygen consumption rate in the Michaelis—Menten rela-
tionship (Hudson and Cater 1964) for the microscopic model, Dy is the 30, diffusion coefficient

in tissue, and Py, is the 30, partial pressure at half maximum 30, consumption concentration.
As well as in a vascular medium

I = D,V2[°0,], (B.5)

where Dy is the 0, diffusion coefficient in vascular media.

Unless the microscopic vascular structures are known or important for the purpose of the
model, it is often unnecessary to model the oxygen diffusion process if the vessels are assumed
to be uniformly distributed because the oxygen diffusion typically happens at a spatial scale
of less than 50 pm and the details of oxygen diffusion have little impact on light transport or
drug distribution, which often happen in the mm spatial scale. Microscopic modeling should
explain subtle details of tissue reoxygenation after interruptions of the light irradiation at
appropriate intervals (fractionated PDT), which may not be completely modeled in a macro-
scopic model.
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