Earth's Atmosphere

Earth's Present Atmosphere

Nitrogen 78.1%
Oxygen 20.9%
Argon 0.9%

 Carbon Dioxide 0.035%

Water 0-

0 - 4%

http://www.ux1.eiu.edu/~cfjps/1400/FIG01_010.JPG

Mount Everest

Layers of the Atmosphere

Comparison of Terrestrial Planet Atmospheres

Atmospheric Gases								
$\begin{array}{ccc} \text{Earth} & & \\ N_2 & 78\% \\ O_2 & 21\% \\ \end{array} \\ Ar & 0.9\% \\ CO_2 & 0.03\% \\ H_2O & 0-3\% \end{array}$	Venus 96% CO_2 96% N_2 3% H_2O 0.1% Ar 0.01% O_2 0.01%	$\begin{array}{cccc} \mathbf{Mars} \\ \mathbf{CO}_2 & 95\% \\ \mathbf{N}_2 & 3\% \\ \end{array}$	Jupiter H ₂ He CH ₄ NH3 Ne	Saturn H ₂ He etc.	Uranus H ₂ CH ₄ He?	Neptune H ₂ He CH ₄ ?		
traces O_3 Ne He Kr Xe H ₂ CH ₄	$\begin{array}{c} \text{volcanoes} \\ \text{H}_2\text{O} \\ \text{CO}_2 \\ \text{SO}_2 \\ \text{N}_2 \\ \text{SO}_3 \\ \text{CO} \\ \text{H}_2 \\ \text{Ar} \\ \text{Cl}_2 \end{array}$	Sources: Dott and Prothero, 2004 (Earth, meteorites, volcan Danielson, Levin, Abrams (1998 (Earth, Venus, Ma Levin, 1996 (Jupiter, Saturn, Uranus, Neptune)						

Cometary Collisions

www.msnbc.msn.com/id/29656682/

http://www.scienceclarified.com/images/uesc_09_img0528.jpg

Volcanic Gas Emissions

http://temp.geobio.uib.no/uploads/images/research-groups/archean_earth.jpg

Composition of Earth's Atmosphere Over Time

http://ircamera.as.arizona.edu/NatSci102/NatSci102/images/atmosgases.jpg

O₂ Levels through Earth History

Limestone and CO₂

O₂ and CO₂: 544Ma to Present

http://www.killerinourmidst.com/grafix/PhanerozoicOxygen.jpg

The Carboniferous, Coal, and CO₂

30-

25-

20

15-

10-

5

Percentage O2 & R CO2

http://www.shef.ac.uk/aps/apsrtp/aps-rtp-2009/pendleton-janine/342.jpg

http://www.killerinourmidst.com/grafix/PhanerozoicOxygen.jpg

http://www.learner.org/courses/envsci/visual/img_med/coal_formation.jpg

Fossil Fuel Formation and CO₂

Photosynthesis

Earth's Recent Atmosphere Changes

http://www.esrl.noaa.gov/gmd/webdata/ccgg/trends/co2_data_mlo.png

Nitrogen78.1%Oxygen20.9%Argon0.9%Carbon0.035%

Water

) - 4%

Earth's Recent Atmosphere Changes

RECENT MONTHLY MEAN CO, AT MAUNA LOA 395 390 PARTS PER MILLION 385 380 Ay 2006 375 2005 2006 2007 2008 2010 2009 YEAR

Atmospheric CO₂ concentrations vary with the seasons

- Lower CO₂ in the summer
- Higher CO₂ in the winter
- Due to plant productivity

http://lh6.ggpht.com/_WtnYwFZtgHI/SmKOQ7kkYil/AAAAAAAAAAAAAAA/THWQ7OYkGzE/s400/co2_trend_mlo.png

CO₂ and the Industrial Revolution

Global atmospheric concentration of CO₂

Indicators of the human influence on the atmosphere during the Industrial era

SYR - FIGURE 2-1 WG1 FIGURE SPM-2

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

1800

IPCC

Earth's Less Recent Atmosphere Changes

Cyclicity of atmospheric CO₂ concentrations over past half million years

Current CO₂ levels higher than at any other time during that interval

http://www.tallbergforum.org/Portals/0/Images/carbon_dioxide.jpg

Methane Clathrates

http://upload.wikimedia.org/wikipedia/commons/f/f8/Methane_Clathrate_Location_Map_USGS.gif

Carbon Dioxide Monitor

- Range: 0-3000 ppm
- Accuracy: ± 50 ppm
- Repeatability (Precision): ± 50 ppm
- Logs data every 30 minutes over a 24-hour period

Determining Atmospheric Quality

AQI Values	Levels of Health Concern	Cautionary Statements		
0 to 50	Good	None.		
51 to 100	Moderate	Unusually sensitive people should consider reducing prolonged or heavy exertion.		
101 to 150	Unhealthy for Sensitive Groups	People with heart or lung disease, older adults, and children should reduce prolonged or heavy exertion.		
151 to 200	Unhealthy	People with heart or lung disease, older adults, and children should avoid prolonged or heavy exertion. Everyone else should reduce prolonged or heavy exertion.		
201 to 300	Very Unhealthy	People with heart or lung disease, older adults, and children should avoid all physical activity outdoors. Everyone else should avoid prolonged or heavy exertion.		
301 to 500	Hazardous	People with heart or lung disease, older adults, and children should remain indoors and keep activity levels low. Everyone else should avoid all physical activity outdoors.		

AQI: Air Quality Index

- The Air Quality Index is a color-coded indicator of air quality, that is based upon air pollutants that adversely affect human health.
- EPA calculates the AQI for five major regulated air pollutants:
 - ground-level ozone
 - particulate matter
 - carbon monoxide
 - sulfur dioxide
 - nitrogen dioxide.

Critical Values for AQI

Breakpoints for the AQI

These Breakpoints					equal these AQIs		Category	
O ₃ (ppm) 8-hour	O ₃ (ppm) 1-hour ¹	PM _{2.5} (μg/m ³)	PM ₁₀ (μg/m ³)	CO (ppm)	SO ₂ (ppm)	NO ₂ (ppm)	AQI	
0.000-0.064	<u>1</u>	0.0 - 15.4	0-54	0.0-4.4	0.000-0.034	(2)	0-50	Good
0.065-0.084	-	15.5 - 40.4	55-154	4.5-9.4	0.035-0.144	(2)	51 - 100	Moderate
0.085-0.104	0.125-0.164	40.5 - 65.4	155 - 254	9.5-12.4	0.145-0.224	Č	101 - 150	Unhealthy for sensitive groups
0.105-0.124	0.165-0.204	65.5 - 150.4	255 - 354	12.5-15.4	0.225-0.304	(2)	151 - 200	Unhealthy
0.125-0.374	0.205-0.404	150.5-250.4	355-424	15.5-30.4	0.305-0.604	0.65-1.24	201 - 300	Very Unhealthy
(3)	0.405-0.504	250.5-350.4	425 - 504	30.5-40.4	0.605-0.804	1.25-1.64	301 - 400	Hazardous
(*)	0.505-0.604	350.5-500.4	505 - 604	40.5-50.4	0.805-1.004	1.65-2.04	401 - 500	Hazardous

¹ Areas are generally required to report the AQI based on 8-hour ozone values. However, there are a small number of areas where an AQI based on 1-hour ozone values would be more precautionary. In these cases, in addition to calculating the 8-hour ozone index value, the 1-hour ozone index value may be calculated and the maximum of the two values is reported.

² NO₂ has no short-term NAAQS and can generate a AQI only above a AQI value of 200.

³ When 8-hour O₃ concentrations exceed 0.374ppm, AQI values of 301 or higher must be calculated with 1-hour O₃ concentrations.

NYS Air Quality Index Forecasts

http://www.dec.ny.gov/chemical/34985.html

National Air Quality Index Forecasts

http://www.airnow.gov/index.cfm?action=airnow.national

Particulate Matter

Tiny solid particles suspended in the air

 The focus of an upcoming class

good up high

o zo, n e

Occurence of Ozone

Ozone is concentrated at two horizons in the atmosphere

bad nearby

EPA Ozone Brochure

Stratospheric Ozone

http://www.nasa.gov/images/content/139207main_ozone_hole_img.gif

 $O_2 + hv = O + O$ $O + O_2 = O_3$

hv = wavelength < 240 nm (ultraviolet)

- Antarctic ozone hole formed by destruction of ozone by Cl and Br
- In upper atmosphere, UV breaks
 CI and Br off of long-lived
 pollutants (CFCs, HCFCs, carbon
 tetrachloride, methyl chloroform,
 halons and methyl bromide)

Formation of Ground Level Ozone

www.geo.sunysb.edu/bad-ozone/Resources.html

epa.gov/air/oaqps/gooduphigh/bad.html

Ozone And Photochemical Smog

http://gothamist.com/attachments/Joe%20Schumacher/ tankengine_smog_0627.jpg

 Ground-level ozone is a major constituent of photochemical smog

Smog = "Smoke + Fog"

http://hk.geocities.com/xavier114fch/03/03b.htm

Ground-Level Ozone Controls

http://www.deg.state.or.us/ag/images/ozone.jpg

http://www.wunderground.com/hurricane/2007/ozone_recap.jpg

- Ground-level ozone requires heat and sunlight
 - Varies by time, season, and location

Catalytic Converters

 Catalytic Converters use platinum group elements to help complete the combustion process in cars:

Reduction of nitrogen oxides: $2NOx \rightarrow xO_2 + N_2$

Oxidation of carbon monoxide: $2CO + O_2 \rightarrow 2CO_2$

Oxidation of unburnt hydrocarbons: $CxH_{2x+2} + 2xO_2 \rightarrow xCO_2 + 2xH_2O$

http://www.autocatalyst-recycling.umicore.com/ catalyticConverter/catalyticConvertorEng.jpg

Carbon Monoxide (CO)

- Carbon monoxide (CO) is a deadly, colorless, odorless, poisonous gas that is produced by the incomplete combustion of fuels
- Urban sources include cars, furnaces, and stoves

http://www.epa.gov/OMS/invntory/overview/pollutants/carbonmon.htm

Carbon Monoxide Effects

- 1 to 70 ppm: No symptoms for most people
- 70 to 150 ppm: Symptoms (headache, fatigue and nausea) become more noticeable.
- 150 to 200 ppm (sustained): Disorientation, unconsciousness, and death are possible.

http://www.kenthospital.org/healthGate/images/ si55551241.jpg

- From 2000-2005, >400 New Yorkers were hospitalized and 30 died from CO poisoning.
- NYC buildings require CO sensors that can shut down furnaces. Building owners in NYC must install CO detectors in every dwelling unit

Portable CO Meter

Office: 0 ppm Living Room: 0 ppm Kitchen (Dinner): 7 ppm Downwind of charcoal grill: 84 ppm

- Range: 0-500 ppm
- Accuracy: ±3%
- Repeatability (Precision): 20%
- 12 hour or "Always On"
- Max/Min, Total, Average
- Used by Inspectors from the NYC Department of Buildings

Nitrogen Oxides (NO_x)

- Formed from high-temperature burning of fuels
- Contributes to ground-level ozone and fine particulate matter
- Dissolves in water to form nitric acid

http://www.epa.gov/oms/invntory/overview/pollutants/nox.htm

National and Local NOx Sources

Total Emissions On Road Vehicles 8,133,567 Electricity Generation 4,668,962 Non Road Equipment 4517,275 Fossil Fuel Combustion 2,419,027 Industrial Processes 1,158,549 Fires 161,029 120,552 Waste Disposal Residential Wood Combustion 36,716 Solvent Use 9,010 Miscellaneous 2,327 Fertilizer & Livestock 2,099 Road Dust Ο. 0 5,000,000 10,000,000 Tons

National Nitrogen Oxides Emissions by Source Sector

in 2002

Nitrogen Oxides Emissions by Source Sector in Kings County, New York in 2002

Sulfur Dioxide (SO₂)

- Produced from the burning of fossil fuels
- Dissolves in water and contributes to formation of acid rain
- Emissions can travel far from their source

http://www.epa.gov/oar/urbanair/so2/

Group Assignment

- Form six groups
- Assignment of either a CO or CO₂ monitor
- Discuss possible hypotheses that you could investigate within a day with your assigned monitor
- Select one hypothesis to test by next Tuesday's class. Be sure that your investigation is: safe, logistically possible, testable, brief.
- Report your proposed research investigation to the class

30 Minutes