The United States Supreme Court has a historical role as a "republican schoolmaster," inculcating virtues in the citizenry. The role as teacher to the republic also serves the interests of the Court. As the "weakest branch," the Supreme Court needs public support if its decisions are to be effective. We investigate the Court's ability to win popular support for its rulings, specifically in the case of Roe v. Wade. The analysis shows that the Court's decision did affect public attitudes but not as previous work would predict. While support for abortions to protect health increased as a result of the Court's decision, the public became more polarized over "discretionary" abortions. The puzzle is what process can account for these disparate reactions. We develop a theory resting on interpersonal influences to explain these results, arguing that the social interpretation of events drives the differing outcomes. This theory is then tested against a purely psychological alternative. The closing discussion considers how these results can be extended to the general problem of public decisions and popular responses, including presidential actions and the influence of the media.

There is a long tradition of research dealing with the relationship between public opinion and the courts. Much of this research has focused on the impact of public opinion on the behavior of judges. This is a natural result of the problem of the role of the courts in a democratic society. Responsiveness of courts to the views of the public is based on both normative and pragmatic considerations. The courts should be responsive in a democratic society. The courts must be responsive because of their weakness as institutions. The tools available to the courts to enforce their will on a resistant public are few (Bickel 1962). But if, through their opinions, the courts can instruct the public, enforcement is gentle but effective. We consider this relationship of court and public—the role of the United States Supreme Court as "republican schoolmaster."

Nowhere has the question of the relation between public opinion and the courts been discussed more than in regard to the role of the Supreme Court. The Anti-Federalists recognized and distrusted the power of the Court as ultimate interpreter of the Constitution, but in Federalist no. 78 Hamilton argued that the judiciary lacked the power to enforce its decrees and that it was therefore the "weakest branch." Moreover, he argued, the Court would provide a valuable protection against the evils of majority tyranny.

Tocqueville, in his observations on American life, supported Hamilton's argument (Tocqueville 1969, 268-69). Tocqueville saw the judiciary as an aristocracy of sorts and thus a valuable
source of the aristocratic virtues that threatened to disappear completely in
democratic society. It is clear that the Fed-
that threatened to disappear completely in
democratic society. It is clear that the Fed-
eralists and Tocqueville envisioned a role
for the Supreme Court beyond that of serv-
vant to the public will. Indeed, the con-
cern at the founding was not only that the
Court should respond to public opinion
but that it should also play an important
role in educating that opinion.

The conception of the Court as republi-
can schoolmaster generally reflects the
notion that the Court, through its explica-
tion of the law and its high moral stand-
ing, may give the populace an example of
the way good republicans should be-
have. Indeed, Lerner (1967) argues that
this role was consciously recognized by
the justices themselves during the early
history of the Court. This concept has a
specific application in the belief that the
Court can through its decisions confer
legitimacy on the claims of disadvantaged
groups.

The question of the Supreme Court and
public opinion has received much atten-
tion in the literature. However, most
studies dealing with public opinion and
the Court deal with questions of regime
support or the response of the Court to
public opinion (Dahl 1957; Kessel 1966;
Murphy and Tanenhaus 1969). The
studies that do deal with the question of
the response of the public to Supreme
Court decisions generally focus on elite
groups (Birkby 1966; Dolbeare and Ham-
mond 1970; R. Johnson 1967; Kemp,
Carp, and Brady 1978). While these are
important, our concern is with the
broader public. If elites attend to public
preferences and the Court fails to con-
vince the public, elite support is likely to
be tenuous and short-lived.

Public response to Court decisions can
have a significant effect on the willingness
of officials to comply with the decisions.
Should they choose to do so, public offi-
cials might move quickly and decisively
to implement the policies defined by
Court decisions. However, officials' per-
ceptions that an issue is too controversial
can lead to inaction, as was the case with
school prayer (Dolbeare and Hammond
1970). It may also result in outright resis-
tance to the Court's mandate, as was the
case with desegregation (Rodgers and Bul-
lock 1972). Like the Court, public officials
"follow th' election returns," but they
have far greater incentives than the Court
to abide by that mandate.

The question we address in this paper is
the nature of public response to Court ac-
tions. The argument comes in three parts.
First, we present evidence that the Court
does influence public opinion but not as
expected by most previous work. This
section is unabashedly atheoretical. We
then develop a post hoc theory of public
response to government actions in general
and the Court's in particular. This theory
accounts for the perplexing findings of the
first section. Finally we offer a test of the
theory.

Do Court Rulings Affect Public
Opinion?

A prominent explanation of the effect
of Court rulings on public opinion is the
legitimation hypothesis (Adamany 1973;
Casey 1974; Dahl 1957; Kessel 1966; Mar-
shall 1987; Murphy and Tanenhaus 1969).
According to this line of argument, when
the Court rules, it confers legitimacy on
the position it favors. The Court's legiti-
macy allows it to bestow legitimacy on
others through its rulings. This leads to
increased public support for the position
taken by the Court.

There are attractive features to this
theory. The Court is held in high regard
by many citizens. It is also recognized as
The Supreme Court and Abortion

the final arbiter of legal questions. Further, it would be perverse to predict the opposite, that the Court's rulings would foster disagreement with its position.

Legitimation is one specific mechanism by which the Court may obtain greater support for its position, but there are many other possible mechanisms. Regardless of the mechanism governing individual reactions, the common hypothesis is that rulings increase support for the Court's position. We want to consider these theories as a class, which we call the positive response hypothesis. For our purposes it is not necessary to specify the precise mechanisms that foster support, only to bear in mind that we are considering a broad category of theories, not the legitimation hypothesis alone.

Studies of the positive response hypothesis have focused on changes in the aggregate level of public support for the Court's position. Blake (1977), Uslaner and Weber (1980), and C. Johnson and Canon (1984) all adopt this approach. They compare the level of public support prior to a decision with the level of support after the decision. Marshall (1987) considers 18 Court decisions since the 1930s. In his analysis the shift between predecision and postdecision opinion is taken as a dependent variable to be explained by several independent variables such as unanimity of the Court, liberalism of the decision, and the time lag between the polls. While more complicated than others, Marshall's approach still focuses on the simple shift between pre- and postdecision opinion. The problem with this approach, as Uslaner and Weber point out, is that trends could lead to increased support apart from any direct impact of the Court.

Empirical studies of the Court's impact have produced little support for the positive response hypothesis. Murphy and Tanenhaus (1969) point to the low salience of the Court as a barrier to influence. Adamany (1973) cites a long list of disappoointed attempts to demonstrate the existence of such influence. More recently, Marshall's (1987) study of 18 court decisions found that the average shift following the decision was virtually zero. However, Marshall did find some positive evidence in the case of liberal, activist decisions, after a time lag. C. Johnson and Canon (1984, 12-13) show that support for legal abortions increased slightly after the Court's Roe decision. The mixed evidence raises doubts about the Court's impact.

Our position is that increased aggregate support for the Court's position is not the best indicator of impact. In the wake of a decision some people may respond positively and some negatively. Both groups are affected by the Court's ruling even if the net effect is no change in aggregate opinion.

Our alternative to the positive response hypothesis is to focus on the structure of opinion concerning a ruling; that is, we are concerned with which groups support and oppose a position and how intensely. If support rises (or falls), the decision had an effect. But even if the net effect is nil, while the structure of group support and opposition changes, we argue that the Court still had an impact. We call this the structural response hypothesis. The null hypothesis, then, is that in the wake of a decision the structure of opinion is unchanged. This truly would be evidence that the Court is a poor schoolmaster— not that it fails to convert its pupils but that it leaves them unchanged.

Our position is that theories emphasizing, for whatever reasons, increased agreement with the Court's rulings miss the political role of the Court. When the Court rules on politically controversial cases, it may establish the law of the land, but it does not put an end to debate. It neither converts the opposition nor ends the controversy. A satisfactory theory of Supreme Court impact must recognize that Court decisions do not necessarily
bring about agreement and may instead sow the seeds of dissension.

Testing the Structural Response Hypothesis

One problem with the study of public response to the Court is that only a small portion of the public is aware of most Court decisions, and an even smaller proportion is accurately informed about them (Kessel 1966; Murphy and Tanenhaus 1969). Therefore, an examination of Court impact on public opinion is meaningful only in cases where public attention is high. For example, Caldeira (1987) shows that during the Roosevelt Court-packing period the public did respond to Court decisions by adjusting their approval of the Court. This is evidence that when the issues are salient, the public may respond to Court actions. We would expect to see a Court impact in relation to issues of great controversy and public interest, such as desegregation and school prayer, rather than issues of low interest such as antitrust or the commerce clause. Paradoxically, however, the high interest that makes a Court decision salient may also blunt its impact, since these issues are likely to tap relatively well-ordered belief structures.

To test the structural response hypothesis, then, we need a visible issue engaging seemingly well-informed public attitudes. A more visible, controversial, salient decision than the Court’s 1973 abortion decision, Roe v. Wade, could hardly be found.

Roe is easily the most highly debated and criticized decision the Court has made in the last 20 years. Annual commemorative marches are held by those opposed to it, constitutional amendments to overturn it have been proposed, and the author of the Court’s opinion—Justice Harry Blackmun—has been the target of hate mail and death threats. Thus, the decision is ideal for a study of public opinion impact. Because of the controversy surrounding it, the level of awareness about the decision should be high.

Of course, this also means that we are observing a high point of Court impact on public opinion. But the emergence of the pro-choice and pro-life movement in the wake of the decision and much of the activism surrounding it occurred after the collection of our data. Our work is concerned with the immediate aftermath of the ruling, not the long-term developments.

Studies of public opinion concerning abortion have examined levels of support in the population but have often ignored the issue of Supreme Court impact (Granberg and Granberg 1980; Plutzer 1986). Where attention has been paid to the decision’s impact on public opinion, studies have adopted the positive response hypothesis and found little support for it (Blake 1977; Combs and Welch 1982; Uslaner and Weber 1980). As we have argued above, this conceptualization of public opinion impact is too narrow. In examining the Court’s impact on public opinion, we need to consider the structural response hypothesis as well.

The Problem of Attribution

Any study of public response to Court decisions faces a difficult design problem. If we compare opinion before the ruling with opinion after, how do we know that changes we find are due to the Court’s ruling rather than something else? For example, Uslaner and Weber (1980) agree that there was more support for some types of abortion after the Roe decision than before. But they discount this finding on the grounds that support was trending up before the decision, thus offering a plausible alternative interpretation of the data. How do we sort out the impact of the decision from the spurious influence of
The Supreme Court and Abortion

other factors? To what do we attribute the change?

This problem is not unique to studies of the Court but applies equally to other public decisions and events. The methodological basis of the problem is that we have a quasi-experimental design, with premeasure, experimental treatment, and postmeasure. The problem is that public decisions typically affect all citizens, so there is no contrast group not exposed to the treatment. Thus, any change between measurements might be due to the treatment but might equally be due to something else. It is very difficult to rule out the possibility of spurious influences.

We gained leverage on the problem by distinguishing between those who had heard of the Roe decision and those who had not. In order to respond to the Court’s action, one must have heard of it. Those who have not heard of it are in effect our contrast group. If long-term trend accounts for change in opinion, those who had not heard of the decision should resemble those who had. If there are shifts among those who heard while those who did not remain unaffected, there is reason to attribute the change to hearing of the Court’s decision.

This is not a perfect solution, because respondents are not randomly assigned to the contrast group. Thus, the differences we find could be due to differences in composition between the experimental and contrast groups. For example, those who do not hear of Court decisions are undoubtedly less educated on average than those who do. Since education is also correlated with opinion on the abortion issue, lower support for abortion among those who do not hear may be due to their lower educational level rather than lack of exposure to the decision. However, if we model abortion opinion as a function of several variables, including education, the differences we find are much less likely to be due to composition, precisely because we explicitly include the compositional variables in our model.

Our design is a workable, if not perfect, solution to the attribution problem. By introducing a comparison group we circumvent the problem of such spurious influences as trend. And by explicitly including composition variables we compensate for nonrandom assignment to the comparison group.²

Model Specification

The structural response hypothesis we consider concerns the impact of the Court’s Roe decision on the structure of public support for abortion. As discussed above, the Court’s influence may be found in changes in the pattern of support or opposition, as well as in the aggregate level of support that the positive response hypothesis considers. The model we estimate allows both of these potential effects to be specified and tested.

In order to test the structural response hypothesis we need to relate individuals’ group membership and personal characteristics to their attitudes toward abortion. The model we estimate uses observations from two cross-section samples, one taken prior to the Court’s ruling and the other taken shortly after. The data from these two surveys are pooled and the equation estimated is

\[
y = \alpha_1 + \alpha_2 d_1 + (\beta_{11} + \beta_{21} d_1) Z_1 + (\beta_{12} + \beta_{22} d_1) Z_2 + \ldots + (\beta_{1k} + \beta_{2k} d_1) Z_k + u,
\]

where \(y\) is the respondent’s position on the abortion scale, \(d_1\) is a dummy variable equal to one after the Court’s decision and zero before, the \(Z_k\) variables are personal characteristics of the respondent that influence preferences on the abortion issue, and \(u\) is a random disturbance term.

The coefficients in this model are specified so that they may vary between the predecision and postdecision samples.
The $\beta_{1k}$ coefficients represent the effect of $Z_k$ before the decision, that is, when $d_1$ is equal to zero. The $\beta_{2k}$ coefficients indicate the additional influence of $Z_k$ following the decision, when $d_1$ equals one. Thus, the effect of, say, $Z_1$ before the decision is $\beta_{11}$ and its influence after the decision is $\beta_{11} + \beta_{21}$. Clearly if $Z_1$ has the same influence after the decision as before, $\beta_{21}$ must equal zero. Conversely, if the effect of $Z_1$ changes as a result of the decision, $\beta_{21}$ must be different from zero. This logic is the basis for our hypothesis tests below.

In the equation, $\alpha_2$ is the coefficient on the dummy variable for 1973 and the $\beta_{2k}$ coefficients indicate how much change there is in the influence of each $Z_k$ variable between 1972 and 1973. If the structure of preferences was unaffected by the Court's actions, we would expect all the $\beta_{2k}$ coefficients to be near zero and the effects of $Z_k$ (estimated by $\beta_{1k}$) to be constant over the two cross-sections. If each of the $\beta_{2k}$ coefficients is near zero while $\alpha_2$ is large and positive, the Court's decision had a uniform effect of raising support for abortion among all population groups represented by $Z_k$—as predicted by the positive response hypothesis—without changing the structure of the support. If, in contrast, $\alpha_2$ is small while at least some of the $\beta_{2k}$ coefficients are large, the primary effect of the decision was to shift the structure of group cleavage on the issue, though producing little net effect on the aggregate balance of preferences. Finally, if both $\alpha_2$ and the $\beta_{2k}$ are close to zero, the Court's action had no discernible influence on the public's preferences regarding the issue.

The GSS field work was conducted in February through April of both 1972 and 1973. The Court's ruling was handed down on 21 January 1973. Thus the second cross-section was collected within a short time of the decision, while the first set of respondents were interviewed well before.

The GSS also provides an excellent battery of preference measures for the abortion issue. Each survey contains six relevant items inquiring about approval of legal abortion in cases of (1) threat to the health of the mother, (2) a likely defect in the baby, (3) rape, (4) poor families who cannot afford another child, (5) unwed mothers, and (6) the parents' not wanting more children. In each case the respondent's are asked if they would permit legal abortions in the specified circumstances. We group these into two sets, one including the health, rape, and defect items and the other the poverty, unwed mother, and unwanted cases. We form two simple scales by counting the number of circumstances in which a respondent would permit abortion, one scale for the first three items (the "health" scale) and one for the second three (the "discretionary" scale). Each of these range from zero to three. The distribution of responses on these scales is given in Table 1. These two scales are our dependent variables.

<table>
<thead>
<tr>
<th>Number of cases</th>
<th>Discretionary Scale</th>
<th>Health Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>42.1</td>
<td>38.8</td>
</tr>
<tr>
<td>1</td>
<td>10.9</td>
<td>9.7</td>
</tr>
<tr>
<td>2</td>
<td>10.2</td>
<td>8.3</td>
</tr>
<tr>
<td>3</td>
<td>36.8</td>
<td>43.2</td>
</tr>
</tbody>
</table>

There are several reasons for treating the health and discretionary scales sepa-
The Supreme Court and Abortion

rately. The Court's decision broke major new ground on the discretionary side, while legitimizing the more common justifications based on health. It is possible that the decision may have affected preferences concerning the abortion circumstances differently. Further, the distribution of opinion is markedly different on each scale; the health scale reflects near consensus, while the discretionary scale shows sharp division. This becomes an important point in our theoretical development below. Finally, there is some debate concerning the unidimensionality of the six items and a suggestion that they should be kept distinct (see Clogg and Sawyer 1981).

There are a number of reports of previous research concerning the correlates of abortion preferences, many based on these same data (e.g., Granberg and Granberg 1980; Flutser 1986). We draw on this research in selecting our exogenous variables. Our concern is to capture the major identified influences in order to test the primary hypotheses concerning the influence of the Court's decision. The variables we have included are education, gender, race, religion, and frequency of church attendance.5

Estimation

The ordinal nature of the dependent variables makes an alternative to regression desirable. An appropriate technique is the polychotomous probit model discussed by McKelvey and Zavoina (1975). This technique assumes that the responses arise from an underlying continuous variable representing the respondents' preferences regarding abortion. The actual questions asked in the survey cut this underlying dimension at various points, giving rise to the observed responses. The polychotomous probit model estimates the coefficients relating the exogenous variables to the underlying continuous preference dimension (up to a linear transformation). Thus the estimated probit equation may be thought of as exactly like a regression equation except that the scale of the dependent variable (and hence the absolute size of the coefficients) is arbitrary.

The specification we have proposed demands a test of the hypothesis that the coefficients of the model are invariant across the two samples. Its central test concerns the set of $\beta_{2k}$ coefficients in our equation. The null hypothesis is that the structure does not change after the ruling. This implies that all the $\beta_{2k}$ coefficients are jointly equal to zero. The test is readily carried out by comparing the probit model in which the coefficients are unconstrained with a model in which the $\beta_{2k}$ coefficients are constrained to be zero. The change in the likelihood function provides the test: $-2$ times the change in the log of the likelihood function is distributed as a chi-squared with degrees of freedom equal to the number of constraints imposed (McKelvey and Zavoina 1975, 110–11). This is analogous to the similar test using constrained and unconstrained regression models (see Johnston 1984, 187–90). If this test leads to the rejection of the null hypothesis, we will have evidence for the structural response hypothesis in the wake of the Court's decision.

Empirical Results

We begin by estimating our model first for the 1973 respondents who had heard of the Court's action, then for those who had not. As discussed above, we need to compare those who heard with the contrast group who had not heard. After comparing the results for each group, we turn to a further check on the effects of differing composition in the two groups.

The estimates on which our hypothesis tests are based are presented in Table 2. Here the equations for abortion preferences are presented for both the constrained and unconstrained models and
for both abortion scales. This table contains all the 1972 respondents but among the 1973 respondents only those who said they had heard about the Court's decision.

The estimated coefficients agree with the typical findings of previous work, indicating that those with more education are considerably more supportive of abortion than those with less. Nonwhites are substantially more opposed to abortion than whites, and Catholics more than non-Catholics. Further, as church attendance increases, so does opposition to abortion. The coefficient for women is small, indicating that the responses of men and women do not differ substantially. These results hold true for both abortion scales.

Overall, the equations are highly significant, with chi-squared values of 533.9 and 468.4, with 10 degrees of freedom, for the discretionary and health scales respectively. The chi-squared values are calculated using the standard likelihood ratio test. (For the application to probit see

---

**Table 2. Estimated Abortion Scale Equations for Respondents Who Have Heard of the Roe Decision (Probit Estimates)**

<table>
<thead>
<tr>
<th>Variables</th>
<th>Discretionary Scale Models</th>
<th>Health Scale Models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unconstrained</td>
<td>Constrained</td>
</tr>
<tr>
<td>Intercept</td>
<td>-.49</td>
<td>-.38</td>
</tr>
<tr>
<td></td>
<td>(.14)</td>
<td>(.11)</td>
</tr>
<tr>
<td>1973 dummy</td>
<td>.31</td>
<td>.08</td>
</tr>
<tr>
<td></td>
<td>(.21)</td>
<td>(.03)</td>
</tr>
<tr>
<td>Education</td>
<td>.11</td>
<td>.11</td>
</tr>
<tr>
<td></td>
<td>(.01)</td>
<td>(.01)</td>
</tr>
<tr>
<td>Education*1973</td>
<td>-.00</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(.02)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>.09</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td>(.07)</td>
<td>(.05)</td>
</tr>
<tr>
<td>Female*1973</td>
<td>-.18</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(.10)</td>
<td></td>
</tr>
<tr>
<td>Nonwhite</td>
<td>-.12</td>
<td>-.23</td>
</tr>
<tr>
<td></td>
<td>(.09)</td>
<td>(.07)</td>
</tr>
<tr>
<td>Nonwhite*1973</td>
<td>-.26</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(.14)</td>
<td></td>
</tr>
<tr>
<td>Catholic</td>
<td>-.20</td>
<td>-.32</td>
</tr>
<tr>
<td></td>
<td>(.08)</td>
<td>(.06)</td>
</tr>
<tr>
<td>Catholic*1973</td>
<td>-.25</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(.11)</td>
<td></td>
</tr>
<tr>
<td>Church attendance</td>
<td>-.14</td>
<td>-.14</td>
</tr>
<tr>
<td></td>
<td>(.01)</td>
<td>(.01)</td>
</tr>
<tr>
<td>Threshold 1</td>
<td>.29</td>
<td>.29</td>
</tr>
<tr>
<td>Threshold 2</td>
<td>.56</td>
<td>.56</td>
</tr>
<tr>
<td>log(L)</td>
<td>-2,651.5</td>
<td>-2,656.6</td>
</tr>
<tr>
<td>Chi-squared</td>
<td>—</td>
<td>10.2</td>
</tr>
<tr>
<td>Significance</td>
<td>—</td>
<td>p &lt; .05</td>
</tr>
</tbody>
</table>

Note: Standard errors are in parentheses. Number of cases = 2472.
The Supreme Court and Abortion

McKelvey and Zavoina 1975, 110–11).

The test of the structural response hypothesis, comparing the constrained and unconstrained models, is presented at the bottom of columns 2 and 4 in Table 2. The first test considers the discretionary preference scale. Here the chi-squared value of 10.2 with 4 degrees of freedom is statistically significant, indicating that we should reject the null hypothesis of no structural change. The coefficients in column 1 indicate that nonwhites and Catholics became substantially more opposed to discretionary abortion in the aftermath of Roe. While the coefficients are not large, there is also a suggestion that women, who had been slightly more supportive of abortion than men, may have become slightly more opposed. There is scant evidence that the effect of education changed.

While it is clear that the structure of preferences for discretionary abortions changed in the direction of greater group differences and conflict, it appears that there was little or no increase in support across all groups. The coefficient for the 1973 dummy variable is positive, but not much larger than its standard error. This suggests that in the case of discretionary abortions, the Court's impact was primarily to increase the polarization of groups on the issue, with little or no increase in overall approval. While consistent with the structural response hypothesis, this result is inexplicable under the positive response notion.

The results are different in the case of the health scale. Here the chi-squared value in column 4 is not significant, indicating that we cannot reject the null hypothesis of constant coefficients. Thus, the polarization effect seen in the case of discretionary abortions is not present in this case. However, there is evidence of an across-the-board increase in approval of health-related abortions. The coefficient for the 1973 dummy is quite large relative to its standard error. This implies that while group differences were not substantially affected, there was an overall increase in approval for abortions in cases of threat to the mother's health, rape, and probable birth defects. This is, of course, what the positive response hypothesis would predict.

As discussed above, a potential design problem is the assumption that the actions of the Court are the only explanation for the change in public attitude, for other trends present before the decision may well have produced the changed coefficients, quite independently of the Court's action. Others have discounted Roe's effects on public opinion on the grounds that the trend in the years preceding Roe was increasingly favorable to abortion (Blake 1977; Uslaner and Weber 1980; but cf. C. Johnson and Canon 1984). Clearly, our results, too, might be colored by such a trend.

We can test this possibility. There were 168 respondents in 1973 who said they had heard nothing of the Court's ruling. If the structural shifts we find are due to changes independent of the Court's action, these comparison group respondents should demonstrate the same structural shifts as the respondents in Table 2 who had heard of the decision. If they do not, it is additional evidence that the shifts found in Table 2 are in fact the result of public response to the decision.

The results for those who had not heard of the Court's decision are presented in Table 3. There is no evidence for structural shifts like those found in Table 2. In the case of the discretionary scale, there is virtually no change evident at all; and for the health scale, too, the chi-squared falls considerably short of significance. In neither case does the coefficient for the dummy variable for 1973 approach statistical significance. Hence, among those who did not hear of the Roe decision, neither the structure of support nor the level of support for abortion changed from 1972 to 1973. This is additional evi-
idence that the shifts found in Table 2 are indeed the result of public reaction to the decision, not the spurious result of independent forces.

But perhaps the Court’s influence was felt mainly among the more interested and educated. Not surprisingly, those who had heard of the Court’s decision are less educated than those who had heard and undoubtedly less politically involved. Among those who had heard of the decision, the mean education was 12.0 years of school versus a mean of 10.2 years among those who had not heard. Our finding of little change among those who had not heard of the ruling might be due to their lower interest or education rather than simply to their not hearing of it. This possibility is mitigated by the fact that we include education as a predictor variable. However, it is conceivable that inclusion of the education variable does not capture all education effects. In order to check for this possibility, we can stratify the 1973 sample by education.

We can test the education objection by

Table 3. Estimated Abortion Scale Equations for Respondents Who Have Not Heard of the Roe Decision (Probit Estimates)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Discretionary Scale Models</th>
<th>Health Scale Models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unconstrained</td>
<td>Constrained</td>
</tr>
<tr>
<td>Intercept</td>
<td>-.47</td>
<td>-.49</td>
</tr>
<tr>
<td></td>
<td>(.14)</td>
<td>(.13)</td>
</tr>
<tr>
<td>1973 dummy</td>
<td>-.20</td>
<td>-.04</td>
</tr>
<tr>
<td></td>
<td>(.36)</td>
<td>(.10)</td>
</tr>
<tr>
<td>Education</td>
<td>.12</td>
<td>.12</td>
</tr>
<tr>
<td></td>
<td>(.01)</td>
<td>(.01)</td>
</tr>
<tr>
<td>Education*1973</td>
<td>.02</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(.03)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>.09</td>
<td>.08</td>
</tr>
<tr>
<td></td>
<td>(.07)</td>
<td>(.06)</td>
</tr>
<tr>
<td>Female*1973</td>
<td>-.08</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(.20)</td>
<td></td>
</tr>
<tr>
<td>Nonwhite</td>
<td>-.12</td>
<td>-.10</td>
</tr>
<tr>
<td></td>
<td>(.09)</td>
<td>(.09)</td>
</tr>
<tr>
<td>Nonwhite*1973</td>
<td>.11</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(.27)</td>
<td></td>
</tr>
<tr>
<td>Catholic</td>
<td>-.21</td>
<td>-.20</td>
</tr>
<tr>
<td></td>
<td>(.08)</td>
<td>(.07)</td>
</tr>
<tr>
<td>Catholic*1973</td>
<td>.02</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(.22)</td>
<td></td>
</tr>
<tr>
<td>Church attendance</td>
<td>-.14</td>
<td>-.14</td>
</tr>
<tr>
<td></td>
<td>(.01)</td>
<td>(.01)</td>
</tr>
<tr>
<td>Threshold 1</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>Threshold 2</td>
<td>.64</td>
<td>.64</td>
</tr>
<tr>
<td>log(L)</td>
<td>-1,629.5</td>
<td>-1,629.8</td>
</tr>
<tr>
<td>Chi-squared</td>
<td>—</td>
<td>.6</td>
</tr>
<tr>
<td>Significance</td>
<td>—</td>
<td>ns</td>
</tr>
</tbody>
</table>

Note: Standard errors are in parentheses. Number of cases = 1,476.
reestimating our model for those who have heard but who are below average in education, like those who did not hear. Table 4 presents the results for those who had heard of the decision but had less than 12 years of schooling. The mean education for this group is actually a bit less than for those who had not heard: 8.7 years versus 10.2. The substantive results mirror the findings of Table 2, not Table 3. Even among these less educated respondents, the structural response hypothesis is supported. It appears that the crucial variable is having heard of the Court's decision, not the respondent's level of education.

**Discussion**

The results presented in Tables 2–4 provide strong evidence of the influence of the Court's actions on the structure of public opinion concerning abortion. In the case of the discretionary scale the result of the decision was to increase the

<table>
<thead>
<tr>
<th>Variable</th>
<th>Discretionary Scale Models</th>
<th>Health Scale Models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unconstrained</td>
<td>Constrained</td>
</tr>
<tr>
<td>Intercept</td>
<td>-.11</td>
<td>-.14</td>
</tr>
<tr>
<td>1973 dummy</td>
<td>.09</td>
<td>.20</td>
</tr>
<tr>
<td>Education</td>
<td>.04</td>
<td>.05</td>
</tr>
<tr>
<td>Education*1973</td>
<td>.05</td>
<td>-.02</td>
</tr>
<tr>
<td>Female</td>
<td>.12</td>
<td>-.04</td>
</tr>
<tr>
<td>Female*1973</td>
<td>-.35</td>
<td>-.04</td>
</tr>
<tr>
<td>Nonwhite</td>
<td>-.16</td>
<td>-.22</td>
</tr>
<tr>
<td>Nonwhite*1973</td>
<td>-.14</td>
<td>-.22</td>
</tr>
<tr>
<td>Catholic</td>
<td>.22</td>
<td>.05</td>
</tr>
<tr>
<td>Catholic*1973</td>
<td>-.39</td>
<td>.29</td>
</tr>
<tr>
<td>Church attendance</td>
<td>-.11</td>
<td>.11</td>
</tr>
<tr>
<td>Threshold 1</td>
<td>.31</td>
<td>.31</td>
</tr>
<tr>
<td>Threshold 2</td>
<td>.96</td>
<td>.96</td>
</tr>
<tr>
<td>log(L)</td>
<td>-.966.1</td>
<td>-.966.9</td>
</tr>
<tr>
<td>Chi-squared</td>
<td>.09</td>
<td>.09</td>
</tr>
<tr>
<td>Significance</td>
<td>.05</td>
<td>.05</td>
</tr>
</tbody>
</table>

Note: Standard errors are in parentheses. Number of cases = 871.
American Political Science Review  Vol. 83

Table 5. Predicted Discretionary Scale Response Probabilities

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>White, Catholic, 1972</td>
<td>.51</td>
<td>.11</td>
<td>.10</td>
<td>.28</td>
</tr>
<tr>
<td>White, Protestant, 1972</td>
<td>.34</td>
<td>.11</td>
<td>.11</td>
<td>.44</td>
</tr>
<tr>
<td>White, Catholic, 1973</td>
<td>.53</td>
<td>.11</td>
<td>.10</td>
<td>.26</td>
</tr>
<tr>
<td>White, Protestant, 1973</td>
<td>.28</td>
<td>.10</td>
<td>.11</td>
<td>.51</td>
</tr>
<tr>
<td>Nonwhite, Protestant, 1972</td>
<td>.52</td>
<td>.11</td>
<td>.10</td>
<td>.27</td>
</tr>
<tr>
<td>Nonwhite, Protestant, 1973</td>
<td>.55</td>
<td>.11</td>
<td>.09</td>
<td>.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Differences between Group Response Probabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catholic-Protestant, 1972</td>
</tr>
<tr>
<td>Catholic-Protestant, 1973</td>
</tr>
<tr>
<td>Nonwhite-White, 1972</td>
</tr>
<tr>
<td>Nonwhite-White, 1973</td>
</tr>
</tbody>
</table>

differences between groups. In the case of the health scale, the impact was a general rise in approval for such abortions, with little evidence for structural shift.

The most striking result from Table 2 is the general tendency for group differences to increase in response to the decision. For both nonwhites and Catholics the coefficients become larger in absolute value, indicating greater differences with the contrast group. This raises questions about the role of the Court as a legitimizing agent for policy positions. If the major impact of Court decisions was to bring citizens into agreement on fundamental constitutional issues, our coefficients would have been smaller in absolute value, not larger. The results suggest that the impact of the Court decision was, instead, to crystallize issue preferences further and to lead to greater homogeneity of within-group beliefs.

We can illustrate the changes in group preferences by using the equations in Table 2 to estimate the probabilities that respondents with particular characteristics will adopt particular preferences. We are most interested in the differences between groups and how these differences changed between 1972 and 1973. Table 5 presents the predicted probabilities of each discretionary scale response option for four groups and two years. The top panel gives the predicted probabilities. We are interested in the contrasts between these groups over time. This is presented in the lower panel of the table.

The first row of the lower panel shows the difference between a white Catholic and a white Protestant in 1972. The table shows that the average Catholic was .17 more likely to oppose all forms of discretionary abortion (a scale score of zero) than an average Protestant. Similarly the Protestant was about .16 more likely than the Catholic to support all cases of discretionary abortion. Compare these figures with the same differences in 1973, shown in the second row. In 1973 the differences have grown by more than 50%, to about .25 and .25, respectively. This is a rather substantial divergence of the two groups. The third and fourth rows of the panel show that similar divergence occurred between white and nonwhite citizens.

The results presented here are both statistically significant and substantial in their implied effects. The changes shown
The Supreme Court and Abortion

in Table 5 should allay fears that our findings are statistical curiosities lacking substantive import.

A Theory of Court Impact on Public Opinion

What theory can account for our results? It is apparent that any theory falling into the class of positive response hypotheses will not be able to explain the findings for discretionary abortions. Likewise, a theory predicting greater polariza-
tion in every case must fail in light of the results for the health scale. Our results show that sometimes public support for the Court's position increases and sometimes opinions become more polarized.

When public decisions are made—whether by the courts, the president or Congress—the individual's psyche processes the information and comes to some conclusions regarding it. If people were atomistic, the process would stop here. But they are not. Much of the meaning of public decisions rests on their interpretation, and interpretation depends on others. Individuals may react to decisions, but they must also consider the reactions of those about them. In this way they test their own interpretations of what has happened and modify their conclusions in light of the communal interpretations.

So when the Court rules, initial reactions may be entirely individualistic; but within a short period of time the individual is exposed to the reactions of others in the social environment. These environmental inputs may change or reinforce both the interpretation of the public decision and the individual's reactions to it. This process leads to a classic contextual model of political attitudes. As John Sprague (1982) puts it, "Consequences for individual political behavior arise from the embedding of the individual in . . . microenvironments—environments which are likely to be both informationally biased and interpersonally reactive. It is in these politically nonneutral and interactive contexts that political information is received, nurtured, matured and ultimately brought to bear on individual acts of political participation, public policy support, and partisanship" (p. 108).

The informational and evaluative biases of different social groups lead to different patterns of response to public decisions. We assume that members of microenvironments are positively affected by the group norms. Thus the effect of group interaction is to increase agreement with the modal response within the immediate social environment. When between-group variance is high, we would expect group members to move in opposite directions, leading to greater polarization. When between group variance is low, then more uniform shifts in the population are the likely result. (See Sprague 1982 for a detailed account of how such a process might work at the micro level).

In the case of abortion preferences, there was high between-group variance on the discretionary side prior to the Court's decision. Catholics and non-whites were considerably more opposed to such abortions. On the health scale, however, there was much less between-group variance. Even among Catholics and non-whites, there was majority support for abortions in cases of threat to the mother's health, rape, or probable birth defects. This is compatible with our finding of increased polarization on the discretionary scale but a uniform increase in support for the health scale. In each case, group members moved in the direction of the group norm.

The nature of the contextual effect also depends upon the homogeneity of opinion within the social environment. If the environment is consensual, the individual is likely to encounter a stream of reinforcements consistently favoring the modal position. If, however, the social environ-
ment is heterogeneous, there will not be consistent reinforcement of a single interpretation of events. This will reduce any contextual effects and produce a response more dependent on the individual alone.

We should consider an alternative theory that does not demand the contextual effect we posit. Individual processing of information alone could account for our findings if those who were predisposed to favor the ruling came to favor it more while those predisposed against became more opposed. Clearly, this is consistent with the results on the discretionary scale. It is also consistent with the health scale estimates, considering that majorities in all groups favored legal abortions for reasons of health. The psychological process underlying such a result might rest on effective counter-arguing with discrepant information and willing acceptance of congenial data.

If both theories explain the same phenomena, Occam's razor would steer us towards the simpler, individualistic, explanation. However, there is a testable difference between the theories, which we take up in the next section.

**A Test of the Theory**

Because of the post hoc development of our theory to account for the patterns in our earlier data analysis, we cannot consider those results as a test of the theory. We need, therefore, to consider the merits of the theory when confronted with a new and proper test.

The contextual theory clearly predicts that homogeneity in the social environment is the key variable in attitude change in response to court decisions. The theory would predict that those who are more solidly embedded in an environment—who have more of their interactions within the group—are most likely to be affected by the group norms. Those peripheral to the environment should be much less affected.

While the General Social Survey is not rich in contextual information, we do have one opportunity to test this prediction of the theory. As we have seen, Catholics moved further away from non-Catholics on the discretionary abortion scale in the wake of the decision. A clear prediction of the theory would be that Catholics who are most firmly rooted within the Catholic community would be the most affected by the group norms following the decision. While the level of interaction with fellow Catholics can vary with neighborhood and choice of friends and acquaintances, it is clear that the most intense association with other Catholics is through the church. Those who are highly involved in the church would necessarily have greater contact with others like themselves than those who seldom attend services.

There is an obvious problem here. Catholics who attend most frequently are undoubtedly more devout than those who attend less regularly. Therefore they might be closer to the group norm and thus more strongly opposed to abortion even before the Court ruled. In order to prevent this confounding of the analysis, we include it in the specification of the model.

This is also a chance to test the alternative explanation for our findings, the purely individualistic reaction theory. If reactions to Court decisions depend only on internal processes, increased interaction with others would have no effect. Frequency of attendance would have no effect on adjustments after the decision.

This is a clear difference in predictions between the two theories. However, high-attendance Catholics might still react more vigorously to the decision if they were more extreme before the ruling. If we find that these highly involved Catholics already prior to the Court's ruling were much more strongly opposed to abortion than were less involved Catholics, increased opposition from this group
after the fact might be due to purely individual processes. However, if this group was not substantially more strongly opposed prior to the ruling, the contextual theory provides an explanation the individualistic theory does not. In this way we hope to replace Occam's razor with a more modern decision rule.

The new model is much like the previous one, with this exception: where the previous model contained only the variables Catholic and Catholic*1973, the new model adds two new variables: high-attendance Catholic and high-attendance Catholic*1973. High attendance is defined as attendance "nearly every week" or more. This represents the top third of respondents. We can write this fragment of the model as

\[ y = \ldots + (\beta_1 + \beta_3 A)\text{Catholic} \\
+ (\beta_2 + \beta_4 A)\text{Catholic*1973} + u, \]

where A is a church attendance dummy with one indicating high attendance, and zero lower attendance.

In this specification, \( \beta_3 \) indicates how much high-attendance Catholics differ from less frequent churchgoers prior to the decision. This is crucial to distinguishing the individualistic theory from the contextual theory. A large negative value would be consistent with either theory, and the test would become inconclusive. If, however, the coefficient is small, large effects of attendance after the decision must be due to contextual effects, and we can distinguish between the models. That issue rests on the \( \beta_4 \) coefficient. This indicates how high-attendance Catholics reacted to the decision. The contextual theory predicts that \( \beta_4 \) should be large and negative. The individualistic theory predicts this only if \( \beta_3 \) is also large and negative. Thus a small estimate of \( \beta_3 \) and a large estimate of \( \beta_4 \) is unambiguous evidence for the contextual theory and against the individualistic one. A small value of \( \beta_4 \) is evidence against the contextual explanation, regardless of values of \( \beta_3 \). Finally, if \( \beta_3 \) and \( \beta_4 \) are both large, we cannot distinguish between the theories, and the results would be consistent with either explanation.

Once more we estimate the model using the combined 1972–73 GSS data, using only those who have heard of the decision. The results are presented in Table 6. The estimated coefficients offer strong support for the contextual model and little support for the individualistic one. For the discretionary scale the estimate of \( \beta_3 \) is considerably less than its standard error (a t-value of .62), indicating that high-attendance Catholics were not significantly more opposed to such abortions prior to the decision. The estimate for \( \beta_4 \) is, in contrast, quite large and negative, with a t-value of 1.94. This accords with the contextual theory's predictions but contradicts the individualistic hypothesis.

The health scale results fall into the familiar pattern of a uniform increase in support (\( \alpha_1 = .55, t = 2.4 \)) with no structural change. While high-attendance Catholics were more strongly opposed to abortions for health than lower-attendance Catholics, they did not react differently to the decision. In a consensual environment this is what we would expect: the opinion environments are uniform, and so is reaction.

These results are very important for our argument. They show that in the case we are able to test with these data, the contextual theory’s prediction is supported. If the theory had not found support in a proper test like this, we could have claimed only that it accounted for the results of our prior findings. But we have shown that it makes predictions not made by a competing explanation.

**Interpretation**

Our theory explaining reactions to the decisions of the Supreme Court is equally
applicable to other public decisions. It would be highly desirable to test it in other settings. Other settings would provide different, and perhaps better, contextual measures and opportunities.

Actions by the president offer one such opportunity. Reactions to foreign crises have long been known to produce a "rally-round-the-flag" effect that raises presidential approval in the immediate aftermath but is often followed by a more sober—and less favorable—assessment (MacKuen 1983; Mueller 1970). The theory developed here suggests a possible explanation for this. In the immediate aftermath of a crisis most reactions are based on individual information processing alone. The crisis event evokes deeply inculcated feelings of regime support and patriotism, producing a short-term gain in approval of the president's actions. In the aftermath, however, social communication processes become the dominant influence. The reaction to events is modified

Table 6. Estimated Abortion Scale Equations Including High Attendance Catholics Variables (Probit Estimates)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Discretionary Scale</th>
<th>Health Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-.52 (.14)</td>
<td>.72 (.15)</td>
</tr>
<tr>
<td>1973 dummy</td>
<td>.27 (.21)</td>
<td>.55 (.23)</td>
</tr>
<tr>
<td>Education</td>
<td>.11 (.01)</td>
<td>.12 (.01)</td>
</tr>
<tr>
<td>Education*1973</td>
<td>-.00 (.02)</td>
<td>-.02 (.02)</td>
</tr>
<tr>
<td>Female</td>
<td>.08 (.07)</td>
<td>.07 (.08)</td>
</tr>
<tr>
<td>Female*1973</td>
<td>-.16 (.10)</td>
<td>-.05 (.11)</td>
</tr>
<tr>
<td>Nonwhite</td>
<td>-.13 (.10)</td>
<td>-.48 (.10)</td>
</tr>
<tr>
<td>Nonwhite*1973</td>
<td>-.26 (.14)</td>
<td>-.06 (.15)</td>
</tr>
<tr>
<td>Catholic</td>
<td>-.18 (.10)</td>
<td>-.01 (.12)</td>
</tr>
<tr>
<td>Catholic*1973</td>
<td>-.11 (.14)</td>
<td>-.29 (.17)</td>
</tr>
<tr>
<td>High-Attendance Catholic</td>
<td>-.09 (.14)</td>
<td>-.39 (.15)</td>
</tr>
<tr>
<td>High-Attendance Catholic*1973</td>
<td>-.38 (.20)</td>
<td>-.00 (.21)</td>
</tr>
<tr>
<td>Church attendance</td>
<td>-.13 (.01)</td>
<td>-.12 (.01)</td>
</tr>
<tr>
<td>Threshold 1</td>
<td>.29</td>
<td>.25</td>
</tr>
<tr>
<td>Threshold 2</td>
<td>.56</td>
<td>.90</td>
</tr>
<tr>
<td>log(L)</td>
<td>-2,646.7</td>
<td>-1,885.2</td>
</tr>
</tbody>
</table>

Note: Standard errors are in parentheses. Number of cases = 2,472.
The Supreme Court and Abortion

by the social environment, as a within-group consensus arises as to the interpretation of actions during the crisis. The groups favoring the president interpret events favorably and approval remains the dominant reaction to the crisis within the group. But in groups that are predominantly unfavorable to the president, social communication leads to a reevaluation of the initial response. The result is a lowering of approval as the within-group effects become dominant. The end result is greater polarization between the president's supporters and opponents.

We can also compare our results with those focusing on media's effect on political attitudes. Iyengar and Kinder (1987) say that the media do not "tell people what to think," as a variant of the positive response hypothesis would suggest the media do. Iyengar and Kinder's research indicates that media coverage has a substantial and consequential effect on problem salience, however. We suggest that this may be the first step in the process of public reaction to public decisions. Media coverage increases salience. In the case of mundane news—the sort that Iyengar and Kinder consider—this effect is likely to stop with the individual processing component of the theory (much as they find).

If the news is less mundane, however, the increased salience leads to discussion with others, and the contextual part of our theory comes into play. While the simple presentation of news does not lead to attitude change, discussions with others in the environment may. Public reaction, then, depends on news salient enough to provoke discussion. The nature of the reaction depends on both the stimulus and the discussion environment.

Finally, consider the types of reactions that are likely following rulings of the Supreme Court. First, most rulings probably have no effect at all. They are of sufficiently low salience and visibility that most of the public remains unaware of them. We are not concerned with these rulings. We are concerned with the rulings where the Court most needs public support—highly visible and probably highly controversial rulings. There are several likely outcomes, depending on the distribution of group opinion among the public.

If the public homogeneously favors the Court's position prior to the ruling, support will rise across all groups. Similarly, if the populace was uniformly opposed to the Court's position beforehand, support will actually decrease in the aftermath. In both cases, the mechanism is the same: individuals are moving in the direction of their (homogeneous) social context.

Different results occur when public opinion is heterogeneous. In such a case groups differ in their reactions, and greater polarization is the most likely outcome. The net effect on aggregate support is indeterminate. Support will rise or fall depending on the relative sizes of the groups and the relative effects within groups. In such cases we should neither be surprised if the net effect is nil nor mistake this for no effect.

The abortion issue's unusual salience and ability to arouse unusually deep feelings may restrict the range of application of our findings. How generalizable are our results? While the abortion decision is unusual, it is not unique. Other decisions of the Court—such as school prayer, the death penalty, and desegregation—also tap deep feelings and relatively well formed public attitudes. The difference between the abortion case and these others is one of degree, not of kind. In this sense Roe was not unique, and we think our results have direct applicability.

Not all of the decisions the Court hands down are like these, however. Many cases that arouse public debate—such as redistricting or the rights of the accused—do not have the same moral overtones, and it would not be surprising if citizens were more willing to be convinced on these issues. While the positive response hy-
hypothesis might fare better on issues like these, the evidence is against it. As we noted earlier, previous research has not found much support for the positive response hypothesis even when considering these more prosaic decisions. If the abortion issue is unusual, it is not because the public is more responsive to the Court’s rulings on other issues.

We think our findings’ limitations have more to do with the salience of Court decisions than with their subject matter. Roe is unusual because of the widespread attention it received. In more routine landmark decisions the public rarely approaches the levels of interest and involvement that followed Roe. This means that the social interaction process we discuss may never come into play, simply because the decision does not become a topic of discussion at home, church, or neighborhood salon. In these cases we would not be surprised if the Court had no discernible impact on public attitudes. Our theory is of reaction to salient government decisions; therein lie both its limitations and its strengths.

Conclusions and Implications

We began by considering a role of the Court envisioned by some of its early commentators—the “republican schoolmaster.” Our results suggest that citizens do listen to the schoolmaster but they also talk in class. While we found evidence for the persuasive powers of the Court in the case of the health scale, reflected in a general increase in support for the Court’s position, we also found that in the case of discretionary abortions the Court only increased differences among groups. In each of these cases it is clear that the Court’s action had an impact—that the public responded to its decision. However, the public response is not a simple matter of increased support for the positions taken by the Court majority. This result offers a warning that efforts to consider the effect of the Court—or other institutions—on public preferences must not rely simply on aggregate support for policies as the sole measure of impact.

The effect of decisions on the structure of preferences also suggests that decisions may have consequences not apparent from the aggregate level of support for Court-backed policies. For example, we find that Catholics and nonwhites became considerably more likely to oppose all forms of discretionary abortion following the Court’s decision. Even if the aggregate percentage in favor of discretionary abortions remained unchanged, this shift may have been quite important. The concentration of religious and ethnic groups in communities and congressional districts suggests that elected public officials may have found themselves confronted with constituents more strongly committed on the abortion issue than before. As a consequence, representatives from heavily black or Catholic districts may have felt more pressure to support antiabortion measures, such as the Hyde amendment, in the Congress. To the extent that geographic constituencies coincide with demographic groups that are strongly affected by Court decisions, these shifts in public opinion may have exaggerated consequences for elected officials (Jackson and Vinovskis 1983). The effect of Brown v. Board of Education is an extreme example of such a situation. Southern white opposition naturally coincided with a major geographic bloc of representatives.

We have focused on the immediate impact of the Court’s decision on the preferences of the mass public. In so doing, we have shown that the public is responsive to the actions of public officials. However, we should be careful not to construe the impact of the Court too narrowly. We present evidence concerning the influence of a decision on public attitudes; yet the Court’s influence is surely not confined to the immediate aftermath of its decisions.
The Supreme Court and Abortion

In the months and years since the Roe decision was handed down there have been increased levels of debate, group mobilization, and political action (Luker 1984). These activities in turn have no doubt influenced citizens’ preferences as well. These effects are also an impact of the Court. While our results are important in their own right, we do not suggest that the Court’s influence is properly measured only in the immediate effects on public attitudes. By the same token we would suggest that there is no simple standard of “impact.” Efforts to reduce the role of the Court (or any other institution of government) to a single summary of its influence are naive. Instead we consider here a single facet of the problem of assessing the responses of citizens to the actions of institutions.

The theory we have proposed to account for public reaction to the Court’s decisions is also applicable to the actions of other institutions. We have suggested how this may be applied to actions of the president and how it may be integrated into research on the media. The fundamental message of the theory is that public responses involve both individual and collective components. The observed responses involve the distribution of group opinions as well as individual attitudes. The salience of the stimulus has a profound effect on how the information is processed. Since group discussion takes time, there is also an implicit dynamic process involved that may produce different reactions at different moments. We hope that such notions will enhance our understanding of the interplay of government decisions and citizen reactions.

Notes

We are especially grateful to Larry Baum, Lee Sigelman, John Sprague, and John Zaller for their very helpful comments on earlier versions of this paper.

1. Note that the positive response hypothesis is a special case of the structural response model in which the “structural” change is simply an increase in overall support with no change in group alignments.

2. For a complete discussion on these issues see Mohr 1985, esp. chap. 4. Like many who discuss design issues, Mohr emphasizes the problems with the design we are using; but he also recognizes its potential when randomization is impossible, as it is here.

3. The exact wording for questions on abortion were: "Please tell me whether or not you think it should be possible for a pregnant woman to obtain a legal abortion if"

   a. there is a strong chance of serious defect in the baby?
   b. she is married and does not want any more children?
   c. the woman’s own health is seriously endangered by the pregnancy?
   d. the family has a very low income and cannot afford more children?
   e. she became pregnant as a result of rape?
   f. she is not married and does not want to marry the man?"

   Responses to items a, c, and e comprise the “health” scale; items b, d, and f make up the “discretionary” scale.

4. A glance at the table makes it clear that more people supported legal abortions in 1973 than in 1972. As Uslaner and Weber (1980) point out, however, it would be wrong to attribute this unthinkingly to the Court’s action alone. They show that the trend had been toward greater approval of abortions and conclude that this alone accounts for the increase in support. Part of our task is to convince the reader that the effects we find are due to the Court’s ruling and not some other plausible explanation, such as trend.

5. Education is measured in years of school. Gender is a dummy variable contrasting females with males. Race is a dummy indicating nonwhites. Religion is a dummy indicator for Catholics. The frequency of church attendance variable ranges from zero (never) to eight (several times a week) with a median of four (about once a month).

6. The church attendance variable is specified with a fixed coefficient because preliminary analysis showed absolutely no tendency for this effect to change following the Court’s ruling.

7. This difference is only faintly mirrored in concern over the abortion issue, however. While 94% of those who had heard were able to place themselves on our scale items, 89% of those who had not heard were also able to place themselves. Thus, there appears to be relatively little difference between the groups in their willingness to respond to the abortion preference items.

8. The values of the education, gender, and church attendance variables were set to the mean for
the group in constructing this table. Thus, we are comparing average white Protestants with average white Catholics, for example, rather than hypotheti-
cal Protestants and Catholics with the same educa-
tion, gender, and church attendance. This is neces-
sary because we want to present a realistic picture of
group differences rather than illustrate the influence
of a single variable, holding all others equal, which
is the more common practice.

References

Elections, and the Supreme Court." Wisconsin
Bickel, Alexander M. 1962. The Least Dangerous
Branch: The Supreme Court at the Bar of
Politics. Indianapolis: Bobbs-Merrill.
Birkey, Robert H. 1966. "The Supreme Court and
the Bible Belt: Tennessee Reaction to the
Schwarzkopf Decision." Midwest Journal of Political
Blake, Judith. 1977. "The Abortion Decisions: Judi-
cial Review and Public Opinion." In Abortion:
New Directions for Policy Studies, ed. Edward
Manier, William Liu, and David Solomon. Notre
Dame: University of Notre Dame Press.
U.S. Supreme Court: FDR's Court-packing
Plan." American Political Science Review
81:1139-54.
Casey, Gregory. 1974. "The Supreme Court and
Myth: An Empirical Investigation." Law and
Society Review 8:385-419.
"A Comparison of Alternative Models for
Analyzing the Scalability of Response Patterns." In
Sociological Methodology 1981, ed. Samuel
Combs, Michael W., and Susan Welch. 1982.
Dahl, Robert. 1957. "Decision Making in a Democ-
acy: The Supreme Court As a National Policy
Dolbeare, Kenneth M., and Phillip E. Hammond.
1970. "Inertia in Midway: Supreme Court Deci-
sions and Local Response." Journal of Legal Educa-
Granberg, Donald, and Beth Williams Granberg.
and Determinants." Family Planning Perspec-
tives 12:250-61.
That Matters. Chicago: University of Chicago
Press.
"Public Opinion, Elections, and the Single Issue
Issue." In The Abortion Dispute and the Ameri-
can System, ed. Gilbert Y. Steiner. Washington:
Brookings Institution.
Washington: Congressional Quarterly.
Johnson, Richard M. 1967. The Dynamics of Com-
pliance: Supreme Court Decision-Making from a
New Perspective. Evanston: Northwestern
University Press.
Kemp, Kathleen A., Robert A. Carp, and David W.
Brady. 1978. "The Supreme Court and Social
Change: The Case of Abortion." Western Political
Quarterly 31:19-31.
Kessel, John. 1966. "Public Perceptions of the
Supreme Court." Midwest Journal of Political
Lerner, Ralph. 1967. "The Supreme Court as Repub-
lican Schoolmaster." In 1967 Supreme Court
Review, ed. Philip B. Kurland. Chicago: Univer-
sity of Chicago Press.
Luker, Kristin. 1984. Abortion and the Politics of
Motherhood. Berkeley: University of California
Press.
"A Statistical Model for the Analysis of Ordinal
Level Dependent Variables." Journal of Mathema-
tical Sociology 4:103-20.
MacKuen, Michael B. 1983. Political Drama, Eco-
nomic Conditions, and the Dynamics of Presi-
dential Popularity." American Journal of Political
Marshall, Thomas. 1987. "The Supreme Court As an
Opinion Leader." American Politics Quarterly
15:147-68.
Mohr, Lawrence B. 1988. Impact Analysis for Pro-
Truman to Johnson." American Political Science
Review 64:18-34.
Murphy, Walter F., and Joseph Tanenhaus. 1969.
"Public Opinion and the United States Supreme
Court: A Preliminary Mapping of Some Pre-
requisites for Court Legitimation of Regime
Changes." In Frontiers of Judicial Research, ed.
Joel B. Grossman and Joseph Tanenhaus. New
York: John Wiley & Sons.
Plutzer, Eric. 1986. Attitudes toward Abortion: A
Study of the Social and Ideological Bases of
Public Opinion. Ph.D. diss., Washington Univer-
sity.
Rodgers, Harrell, and Charles Bullock III. 1972. Law
and Social Change: Civil Rights Laws and Their
Sprague, John. 1982. "Is There a Micro Theory Con-
sistent with Contextual Analysis?" In Strategies
of Political Inquiry, ed. Elton Ostrom. Beverly
Hills: Sage.
The Supreme Court and Abortion


Charles H. Franklin is Assistant Professor and Liane C. Kosaki is Visiting Assistant Professor of Political Science, Washington University, St. Louis, MO 63130.