Q19.5 Thermal expansion of the glass bulb occurs first, since the wall of the bulb is in direct contact with the hot water. Then the mercury heats up, and it expands.
Q19.12 At high temperature and pressure, the steam inside exerts large forces on the pot and cover. Strong latches hold them together, but they would explode apart if you tried to open the hot cooker.
P19.11 For the dimensions to increase, $\Delta L=\alpha L_{i} \Delta T$

$$
\begin{aligned}
& 1.00 \times 10^{-2} \mathrm{~cm}=1.30 \times 10^{-4}{ }^{\circ} \mathrm{C}^{-1}(2.20 \mathrm{~cm})\left(T-20.0^{\circ} \mathrm{C}\right) \\
& T=55.0^{\circ} \mathrm{C}
\end{aligned}
$$

P19.33

$$
\sum F_{y}=0: \quad \rho_{\text {out }} g V-\rho_{\text {in }} g V-(200 \mathrm{~kg}) g=0
$$

$$
\left(\rho_{\text {out }}-\rho_{\text {in }}\right)\left(400 \mathrm{~m}^{3}\right)=200 \mathrm{~kg}
$$

The density of the air outside is $125 \mathrm{~kg} / \mathrm{m}^{3}$.
From $P V=n R T, \frac{n}{V}=\frac{P}{R T}$
The density is inversely proportional to the temperature, and the density of the hot air is

FIG. P19.33

Then $\quad\left(125 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(1-\frac{283 \mathrm{~K}}{T_{\text {in }}}\right)\left(400 \mathrm{~m}^{3}\right)=200 \mathrm{~kg}$

$$
1-\frac{283 \mathrm{~K}}{T_{\mathrm{in}}}=0.400
$$

$$
0.600=\frac{283 \mathrm{~K}}{T_{\text {in }}} \quad T_{\text {in }}=472 \mathrm{~K}
$$

P19.38
At depth, $\quad P=P_{0}+\rho g h \quad$ and $\quad P V_{i}=n R T_{i}$
At the surface,

$$
P_{0} V_{f}=n R T_{f}:
$$

$$
\frac{P_{0} V_{f}}{\left(P_{0}+\rho g h\right) V_{i}}=\frac{T_{f}}{T_{i}}
$$

Therefore $\quad V_{f}=V_{i}\left(\frac{T_{f}}{T_{i}}\right)\left(\frac{P_{0}+\rho g h}{P_{0}}\right)$
$V_{f}=1.00 \mathrm{~cm}^{3}\left(\frac{293 \mathrm{~K}}{278 \mathrm{~K}}\right)\left(\frac{1.013 \times 10^{5} \mathrm{~Pa}+\left(1025 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(25.0 \mathrm{~m})}{1.013 \times 10^{5} \mathrm{~Pa}}\right)$
$V_{f}=3.67 \mathrm{~cm}^{3}$
P19.58
(a)

$$
B=\rho g V^{\prime} \quad P^{\prime}=P_{0}+\rho g d \quad \quad P^{\prime} V^{\prime}=P_{0} V_{i}
$$

$$
B=\frac{\rho g P_{0} V_{i}}{P^{\prime}}=\frac{\rho g P_{0} V_{i}}{\left(P_{0}+\rho g d\right)}
$$

(b) Since d is in the denominator, B must decrease as the depth increases.
(The volume of the balloon becomes smaller with increasing pressure.)
(c) $\frac{1}{2}=\frac{B(d)}{B(0)}=\frac{\rho g P_{0} V_{i} /\left(P_{0}+\rho g d\right)}{\rho g P_{0} V_{i} / P_{0}}=\frac{P_{0}}{P_{0}+\rho g d}$

$$
P_{0}+\rho g d=2 P_{0}
$$

$$
d=\frac{P_{0}}{\rho g}=\frac{1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}}{\left(1.00 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}=10.3 \mathrm{~m}
$$

P19.2
P19.4
(a) 1.06 atm ; (b) $-124^{\circ} \mathrm{C}$
(a) $37.0^{\circ} \mathrm{C}=310 \mathrm{~K}$; (b) $-20.6^{\circ} \mathrm{C}=253 \mathrm{~K}$

P19.12
P19.14 0.663 mm to the right at 782° below the horizontal
P19.6 $T_{C}=\left(1.33 \mathrm{C}^{\circ} / \mathrm{S}^{\circ}\right) T_{\mathrm{S}}+20.0^{\circ} \mathrm{C}$
P19.8 0.313 m
P19.10 1.20 cm

P19.16
P19.18
(a) $0.109 \mathrm{~cm}^{2}$; (b) increase
(a) $437^{\circ} \mathrm{C}$; (b) $3000^{\circ} \mathrm{C}$; no

P19.20
(a) $2.52 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$; (b) no

P19.44
(a) 2.24 m ; (b) $9.28 \times 10^{5} \mathrm{~Pa}$

P19.46
P19.48
P19.50
P19.52
0.523 kg

P19.22 $0.812 \mathrm{~cm}^{3}$
P19.24
(a) 396 N ; (b) $-101^{\circ} \mathrm{C}$; (c) no change

P19.26
(a) 2.99 m ol ; (b) $1.80 \times 10^{24} \mathrm{~m}$ olecules
(a) see the solution; (b) $\alpha \ll \beta$
(a) 0.169 m ; (b) $1.35 \times 10^{5} \mathrm{~Pa}$
6.57 M Pa

P19.30
(a) $1.06 \times 10^{21} \mathrm{~kg}$; (b) 56.9 K

P19.54
(a) 900 K ; (b) 1200 K

P19.32

$$
3.96 \times 10^{-2} \mathrm{~m} \mathrm{ol}
$$

P19.36
(c) it bends the other way; (d) 0.830°

$$
3.67 \mathrm{~cm}^{3}
$$

P19.56
(a) $\theta=\frac{\left(\alpha_{2}-\alpha_{1}\right) L_{i} \Delta T}{\Delta r}$; (b) see the solution;

P19.38 $\quad 3.67 \mathrm{~cm}^{3}$
P19.40 between $10^{1} \mathrm{~kg}$ and $10^{2} \mathrm{~kg}$
P19.58
(a) increase by $95.0 \mu \mathrm{~s}$; (b) loses 57.5 s
(a) $B=\rho g P_{0} V_{i}\left(P_{0}+\rho g d\right)^{-1}$ up; (b) decrease;
(c) 10.3 m

P19.42 $2.41 \times 10^{11} \mathrm{~m}$ olecules

Q20.14 The materials used to make the support structure of the roof have a higher thermal conductivity than the insulated spaces in between. The heat from the barn conducts through the rafters and melts the snow.
Q20.29 The person should add the cream immediately when the coffee is poured. Then the smaller temperature difference between coffee and environment will reduce the rate of energy loss during the several minutes.
P20.17

$$
\text { Then }\left(\frac{1}{2} m v^{2}+m c|\Delta T|\right)_{\text {bullet }}=m_{w} L_{f}
$$

where m_{w} is the melt water mass

$$
\begin{aligned}
& m_{w}=\frac{0.500\left(3.00 \times 10^{-3} \mathrm{~kg}\right)(240 \mathrm{~m} / \mathrm{s})^{2}+3.00 \times 10^{-3} \mathrm{~kg}\left(128 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\right)\left(30.0^{\circ} \mathrm{C}\right)}{3.33 \times 10^{5} \mathrm{~J} / \mathrm{kg}} \\
& m_{w}=\frac{86.4 \mathrm{~J}+11.5 \mathrm{~J}}{333000 \mathrm{~J} / \mathrm{kg}}=0.294 \mathrm{~g}
\end{aligned}
$$

P20.26
P20.43
$W=-\int_{i}^{f} P d V=-P \int_{i}^{f} d V=-P \Delta V=-n R \Delta T=-n R\left(T_{2}-T_{1}\right)$
In the steady state condition, $\quad P_{A u}=P_{A g}$
so that $k_{\mathrm{Au}} A_{\mathrm{Au}}\left(\frac{\Delta T}{\Delta x}\right)_{\mathrm{Au}}=k_{\mathrm{Ag}} A_{\mathrm{Ag}}\left(\frac{\Delta T}{\Delta x}\right)_{\mathrm{Ag}}$
In this case

$$
A_{\mathrm{Au}}=A_{\mathrm{Ag}}
$$

$$
\begin{aligned}
& \Delta x_{\mathrm{Au}}=\Delta x_{\mathrm{Ag}} \\
& \Delta T_{\mathrm{Au}}=(80.0-T)
\end{aligned}
$$

FIG. P20.43
and $\quad \Delta T_{\mathrm{Ag}}=(T-30.0)$
where T is the temperature of the junction.
Therefore,

$$
k_{\mathrm{Au}}(80.0-T)=k_{\mathrm{Ag}}(T-30.0)
$$

And $\quad T=512^{\circ} \mathrm{C}$
P20.51 The sphere of radius R absorbs sunlight over the area of its day hemisphere, projected as a flat circle perpendicular to the light: πR^{2}. It radiates in all directions, over area $4 \pi R^{2}$. Then, in steady state,

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{in}}=\mathrm{P}_{\text {out }} \\
& e\left(1340 \mathrm{~W} / \mathrm{m}^{2}\right) \pi R^{2}=\Theta \sigma\left(4 \pi R^{2}\right) T^{4}
\end{aligned}
$$

The emissivity e, the radius R, and π all cancel.
Therefore, $T=\left[\frac{1340 \mathrm{~W} / \mathrm{m}^{2}}{4\left(5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}^{4}\right)}\right]^{1 / 4}=277 \mathrm{~K}=4^{\circ} \mathrm{C}$.
*P20.61
The loss of mechanical energy is

$$
\begin{aligned}
\frac{1}{2} m v_{i}^{2}+\frac{G M_{E} m}{R_{E}} & =\frac{1}{2} 670 \mathrm{~kg}\left(1.4 \times 10^{4} \mathrm{~m} / \mathrm{s}\right)^{2}+\frac{6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} 5.98 \times 10^{24} \mathrm{~kg} \mathrm{670} \mathrm{~kg}}{\mathrm{~kg}^{2} 6.37 \times 10^{6} \mathrm{~m}} \\
& =6.57 \times 10^{10} \mathrm{~J}+420 \times 10^{10} \mathrm{~J}=1.08 \times 10^{11} \mathrm{~J}
\end{aligned}
$$

One half becomes extra internal energy in the aluminum: $\Delta E_{\text {int }}=5.38 \times 10^{10} \mathrm{~J}$. To raise its temperature to the melting point requires energy

$$
m c \Delta T=670 \mathrm{~kg} \mathrm{900} \frac{\mathrm{~J}}{\mathrm{~kg}^{\circ} \mathrm{C}}\left(660-\left(-15^{\circ} \mathrm{C}\right)\right)=4.07 \times 10^{8} \mathrm{~J}
$$

To melt it, $m L=670 \mathrm{~kg} 3.97 \times 10^{5} \mathrm{~J} / \mathrm{kg}=2.66 \times 10^{8} \mathrm{~J}$. To raise it to the boiling point, $m c \Delta T=670(1170)(2450-600) \mathrm{J}=1.40 \times 10^{9} \mathrm{~J}$. To boil it, $m L=670 \mathrm{~kg} 1.14 \times 10^{7} \mathrm{~J} / \mathrm{kg}=7.64 \times 10^{9} \mathrm{~J}$. Then

$$
\begin{aligned}
& 5.38 \times 10^{10} \mathrm{~J}=9.71 \times 10^{9} \mathrm{~J}+670(1170)\left(T_{f}-2450^{\circ} \mathrm{C}\right) \mathrm{J} /{ }^{\circ} \mathrm{C} \\
& T_{f}=5.87 \times 10^{4 \circ} \mathrm{C}
\end{aligned}
$$

P20.2 $0.105^{\circ} \mathrm{C}$
P20.4 $87.0^{\circ} \mathrm{C}$
P20.6 The energy input to the water is 6.70 times larger than the laser output of 40.0 kJ .
P20.8 882 W
P20.10 (a) $25.8^{\circ} \mathrm{C}$; (b) no
P20.12 $T_{f}=\frac{\left(m_{\mathrm{Al}} c_{\mathrm{Al}}+m_{c} c_{w}\right) T_{c}+m_{h} c_{w} T_{h}}{m_{\mathrm{Al}} c_{\mathrm{Al}}+m_{c} c_{w}+m_{h} c_{w}}$
P20.14 (a) 380 K ; (b) 206 kPa
P20.16 12.9 g
P20.18 (a) all the ice melts; $40.4^{\circ} \mathrm{C}$;
(b) 8.04 g melts; $0^{\circ} \mathrm{C}$

P20.20 34.0 km
P20.22 liquid lead at $805^{\circ} \mathrm{C}$
P20.24 (a) $-12.0 \mathrm{M} \mathrm{J;} \mathrm{(b)}+12.0 \mathrm{M} \mathrm{J}$
P20.26 $-n R\left(T_{2}-T_{1}\right)$
P20.28 (a) $567 \mathrm{~J} ;(\mathrm{b}) 167 \mathrm{~J}$
P20.30 (a) 12.0 kJ ; (b) -12.0 kJ
P20.32 42.9 kJ
P20.34 (a) 7.65 L; (b) 305 K
P20.36 (a) -48.6 m J ; (b) 162 kJ ; (c) 162 kJ
P20.38 (a) $-4 P_{i} V_{i} ;(\mathrm{b})+4 P_{i} V_{i}$; (c) -9.08 kJ
P20.40 (a) $1300 \mathrm{~J} ;$ (b) 100 J ; (c) $-900 \mathrm{~J} ;(\mathrm{d})-1400 \mathrm{~J}$
P20.42 10.0 kW
P20.44 1.34 kW
$\mathbf{P 2 0 . 4 6}$ (a) $0.890 \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F} \cdot \mathrm{h} / \mathrm{Btu}$;(b) $1.85 \frac{\mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F} \cdot \mathrm{h}}{\mathrm{Btu}}$;(c) 2.08
P20.48 (a) $\sim 10^{3} \mathrm{~W} ;(\mathrm{b}) \sim-10^{-1} \mathrm{~K} / \mathrm{s}$
P20.50 364 K
P20.52 47.7 g
P20.54 (a) $13.0^{\circ} \mathrm{C}$; (b) $-0.532^{\circ} \mathrm{C} / \mathrm{s}$
P20.56 (a) $641^{\circ} \mathrm{C}$; (b) $113^{\circ} \mathrm{C}$
P20.58 see the solution (a) $\frac{1}{2} P_{i} V_{i}$; (b) $1.39 P_{i} V_{i}$; (c) 0
P20.60 (a) $9.31 \times 10^{10} \mathrm{~J}$; (b) $-8.47 \times 10^{12} \mathrm{~J}$;(c) $8.38 \times 10^{12} \mathrm{~J}$
P20.62 (a) 2000 W ; (b) $4.47^{\circ} \mathrm{C}$
P20.64 $3.76 \mathrm{~m} / \mathrm{s}$
P20.66 (a) 15.0 m g ; block: $Q=0 ; W=-5.00 \mathrm{~J} ; \Delta E_{\text {int }}=0$;
$\Delta K=-5.00 \mathrm{~J}$; ice: $Q=0 ; W=5.00 \mathrm{~J}$;
$\Delta E_{\text {int }}=5.00 \mathrm{~J} ; \Delta K=0$
(b) 15.0 m g ; block: $Q=0 ; W=0 ; \Delta E_{\text {int }}=5.00 \mathrm{~J}$;
$\Delta K=-5.00 \mathrm{~J} ;$ metal: $Q=0 ; W=0 ; \Delta E_{\text {int }}=0$;
$\Delta K=0$ (c) $0.00404^{\circ} \mathrm{C}$; moving block: $Q=0$;
$W=-2.50 \mathrm{~J} ; \Delta E_{\text {int }}=2.50 \mathrm{~J} ;$
$\Delta K=-5.00 \mathrm{~J} ;$ stationary block: $Q=0 ; W=2.50 \mathrm{~J}$;
$\Delta E_{\text {int }}=2.50 \mathrm{~J} ; \Delta K=0$
P20.68 102 h
P20.72 $800 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$

Q21.5 The alcohol evaporates, absorbing energy from the skin to lower the skin temperature.

P21.2

$$
\bar{F}=\frac{\left(5.00 \times 10^{23}\right)\left[2\left(4.68 \times 10^{-26} \mathrm{~kg}\right)(300 \mathrm{~m} / \mathrm{s})\right]}{1.00 \mathrm{~s}}=14.0 \mathrm{~N}
$$

and $P=\frac{\bar{F}}{A}=\frac{14.0 \mathrm{~N}}{8.00 \times 10^{-4} \mathrm{~m}^{2}}=17.6 \mathrm{kPa}$.

P21.24
$\begin{array}{ll}\text { (a) } \quad P_{i} V_{i}^{\gamma}=P_{f} V_{f}^{\gamma} & \frac{V_{f}}{V_{i}}=\left(\frac{P_{i}}{P_{f}}\right)^{1 / \gamma}=\left(\frac{1.00}{20.0}\right)^{5 / 7}=0.118 \\ \text { (b) } \quad \frac{T_{f}}{T_{i}}=\frac{P_{f} V_{f}}{P_{i} V_{i}}=\left(\frac{P_{f}}{P_{i}}\right)\left(\frac{V_{f}}{V_{i}}\right)=(20.0)(0.118) & \frac{T_{f}}{T_{i}}=2.35 \\ \text { (c) } & \text { Since the process is adiabatic, } \\ \text { Since } \gamma=1.40=\frac{C_{P}}{C_{V}}=\frac{R+C_{V}}{C_{V}}, & Q=0 \\ & C_{V}=\frac{5}{2} R \text { and } \Delta T=2.35 T_{i}-T_{i}=1.35 T_{i}\end{array}$

$$
\Delta E_{\mathrm{int}}=n C_{V} \Delta T=(0.0160 \mathrm{~m} \mathrm{ol})\left(\frac{5}{2}\right)(8.314 \mathrm{~J} / \mathrm{m} \mathrm{ol} \cdot \mathrm{~K})[1.35(300 \mathrm{~K})]=135 \mathrm{~J}
$$

and

$$
W=-Q+\Delta E_{\text {int }}=0+135 \mathrm{~J}=+135 \mathrm{~J} .
$$

P21.26 $\quad V_{i}=\pi\left(\frac{2.50 \times 10^{-2} \mathrm{~m}}{2}\right)^{2} 0.500 \mathrm{~m}=2.45 \times 10^{-4} \mathrm{~m}^{3}$
The quantity of air we find from $P_{i} V_{i}=n R T_{i}$

$$
\begin{aligned}
& n=\frac{P_{i} V_{i}}{R T_{i}}=\frac{\left(1.013 \times 10^{5} \mathrm{~Pa}\right)\left(2.45 \times 10^{-4} \mathrm{~m}^{3}\right)}{(8.314 \mathrm{~J} / \mathrm{m} \mathrm{ol} . \mathrm{K})(300 \mathrm{~K})} \\
& n=9.97 \times 10^{-3} \mathrm{~m} \mathrm{ol}
\end{aligned}
$$

Adiabatic compression: $P_{f}=101.3 \mathrm{kPa}+800 \mathrm{kPa}=901.3 \mathrm{kPa}$
(a) $\quad P_{i} V_{i}^{\gamma}=P_{f} V_{f}^{\gamma}$

$$
\begin{aligned}
& V_{f}=V_{i}\left(\frac{P_{i}}{P_{f}}\right)^{1 / \gamma}=245 \times 10^{-4} \mathrm{~m}^{3}\left(\frac{1013}{9013}\right)^{5 / 7} \\
& \\
& V_{f}=515 \times 10^{-5} \mathrm{~m}^{3} \\
& \\
& P_{f} V_{f}=n R T_{f}
\end{aligned}
$$

$$
\begin{aligned}
& T_{f}=T_{i} \frac{P_{f} V_{f}}{P_{i} V_{i}}=T_{i} \frac{P_{f}}{P_{i}}\left(\frac{P_{i}}{P_{f}}\right)^{1 / \gamma}=T_{i}\left(\frac{P_{i}}{P_{f}}\right)^{(1 / \gamma-1)} \\
& T_{f}=300 \mathrm{~K}\left(\frac{101.3}{901.3}\right)^{(5 / 7-1)}=560 \mathrm{~K}
\end{aligned}
$$

(c) The work put into the gas in compressing it is $\Delta E_{\text {int }}=n C_{V} \Delta T$

$$
\begin{aligned}
& W=\left(9.97 \times 10^{-3} \mathrm{~m} \mathrm{ol}\right) \frac{5}{2}(8.314 \mathrm{~J} / \mathrm{m} \mathrm{ol} \cdot \mathrm{~K})(560-300) \mathrm{K} \\
& W=53.9 \mathrm{~J}
\end{aligned}
$$

Now imagine this energy being shared with the inner wall as the gas is held at constant volume. The pump wall has outer diameter $25.0 \mathrm{~mm}+2.00 \mathrm{~mm}+2.00 \mathrm{~mm}=29.0 \mathrm{~mm}$, and volume

$$
\left[\pi\left(14.5 \times 10^{-3} \mathrm{~m}\right)^{2}-\pi\left(12.5 \times 10^{-3} \mathrm{~m}\right)^{2}\right] 4.00 \times 10^{-2} \mathrm{~m}=6.79 \times 10^{-6} \mathrm{~m}^{3}
$$

and mass $\rho V=\left(7.86 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(6.79 \times 10^{-6} \mathrm{~m}^{3}\right)=53.3 \mathrm{~g}$
The overall warming process is described by

$$
\begin{aligned}
53.9 \mathrm{~J} & =n C_{V} \Delta T+m \mathrm{C} \Delta T \\
53.9 \mathrm{~J} & =\left(9.97 \times 10^{-3} \mathrm{~mol}\right) \frac{5}{2}(8.314 \mathrm{~J} / \mathrm{m} \mathrm{ol} \cdot \mathrm{~K})\left(T_{\text {ff }}-300 \mathrm{~K}\right) \\
& +\left(53.3 \times 10^{-3} \mathrm{~kg}\right)(448 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})\left(T_{\text {ff }}-300 \mathrm{~K}\right) \\
53.9 \mathrm{~J} & =(0.207 \mathrm{~J} / \mathrm{K}+23.9 \mathrm{~J} / \mathrm{K})\left(T_{\text {ff }}-300 \mathrm{~K}\right) \\
T_{\text {ff }}-300 \mathrm{~K} & =224 \mathrm{~K}
\end{aligned}
$$

(a) From $v_{\mathrm{av}}=\sqrt{\frac{8 k_{\mathrm{B}} T}{\pi m}}$
we find the temperature as $T=\frac{\pi\left(6.64 \times 10^{-27} \mathrm{~kg}\right)\left(112 \times 10^{4} \mathrm{~m} / \mathrm{s}\right)^{2}}{8\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{m} \mathrm{ol} \cdot \mathrm{K}\right)}=2.37 \times 10^{4} \mathrm{~K}$
(b) $\quad T=\frac{\pi\left(6.64 \times 10^{-27} \mathrm{~kg}\right)\left(2.37 \times 10^{3} \mathrm{~m} / \mathrm{s}\right)^{2}}{8\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{m} \mathrm{ol} . \mathrm{K}\right)}=1.06 \times 10^{3} \mathrm{~K}$
$5.05 \times 10^{-21} \mathrm{~J} / \mathrm{m}$ olecule
$6.64 \times 10^{-27} \mathrm{~kg}$
$477 \mathrm{~m} / \mathrm{s}$
(a) 2.28 kJ ; (b) $6.21 \times 10^{-21} \mathrm{~J}$

748 J
7.52 L

P21.16
(a) 118 kJ ; (b) $6.03 \times 10^{3} \mathrm{~kg}$

P21.18
(a) $719 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$; (b) 0.811 kg ; (c) 233 kJ ;
(d) 327 kJ

P21.20 13.5PV
P21.22 (a) $4 T_{i}$; (b) $9(1 \mathrm{~m} \mathrm{ol}) R T_{i}$
P21.24
(a) 0.118 ; (b) 235 ; (c) $0 ; 135 \mathrm{~J} ; 135 \mathrm{~J}$

P21.26
(a) 1.55 ; (b) $0.127 \mathrm{~m}^{3}$

P21.38
(a) 1.03 ; (b) ${ }^{35} \mathrm{Cl}$

P21.30
(b) $219 V_{i}$; (c) $3 T_{i}$; (d) T_{i}; (e) $-0.830 P_{i} V_{i}$

P21.40
$132 \mathrm{~m} / \mathrm{s}$
P21.32
25.0 kW

P21.36 (a) No atom, almost all the time;(b) 2.70×10^{20}
Q22.7 Suppose the ambient temperature is $20^{\circ} \mathrm{C}$. A gas can be heated to the temperature of the bottom of the pond, and allowed to cool as it blows through a turbine. The Carnot efficiency of such an engine is about $e_{c}=\frac{\Delta T}{T_{h}}=\frac{80}{373}=22 \%$.
*P22.5
(a) The input energy each hour is
$\left(7.89 \times 10^{3} \mathrm{~J} /\right.$ revolution $)(2500 \mathrm{rev} / \mathrm{m}$ in $) \frac{60 \mathrm{~m} \text { in }}{1 \mathrm{~h}}=1.18 \times 10^{9} \mathrm{~J} / \mathrm{h}$
implying fuel input $\left(1.18 \times 10^{9} \mathrm{~J} / \mathrm{h}\right)\left(\frac{1 \mathrm{~L}}{4.03 \times 10^{7} \mathrm{~J}}\right)=29.4 \mathrm{~L} / \mathrm{h}$
(b) $\quad Q_{h}=W_{\text {eng }}+\left|Q_{c}\right|$. For a continuous-transfer process we may divide by time to have

$$
\frac{Q_{h}}{\Delta t}=\frac{W_{\mathrm{eng}}}{\Delta t}+\frac{\left|Q_{c}\right|}{\Delta t}
$$

U sefulpow er ou tput $=\frac{W_{\text {eng }}}{\Delta t}=\frac{Q_{h}}{\Delta t}-\frac{\left|Q_{c}\right|}{\Delta t}$

$$
=\left(\frac{7.89 \times 10^{3} \mathrm{~J}}{\text { revolution }}-\frac{4.58 \times 10^{3} \mathrm{~J}}{\text { revolution }}\right) \frac{2500 \mathrm{rev}}{1 \mathrm{~m} \text { in }} \frac{1 \mathrm{~m} \text { in }}{60 \mathrm{~s}}=1.38 \times 10^{5} \mathrm{~W}
$$

$$
\mathrm{P}_{\mathrm{eng}}=1.38 \times 10^{5} \mathrm{~W}\left(\frac{1 \mathrm{hp}}{746 \mathrm{~W}}\right)=185 \mathrm{hp}
$$

(c) $\quad \mathrm{P}_{\mathrm{eng}}=\tau \omega \Rightarrow \tau=\frac{\mathrm{P}_{\mathrm{eng}}}{\omega}=\frac{1.38 \times 10^{5} \mathrm{~J} / \mathrm{s}}{(2500 \mathrm{rev} / 60 \mathrm{~s})}\left(\frac{1 \mathrm{rev}}{2 \pi \mathrm{rad}}\right)=527 \mathrm{~N} \cdot \mathrm{~m}$
(d) $\frac{\left|Q_{c}\right|}{\Delta t}=\frac{4.58 \times 10^{3} \mathrm{~J}}{\text { revolution }}\left(\frac{2500 \mathrm{rev}}{60 \mathrm{~s}}\right)=1.91 \times 10^{5} \mathrm{~W}$

P22.11 $\quad T_{c}=703 \mathrm{~K} \quad T_{h}=2143 \mathrm{~K}$
(a) $e_{c}=\frac{\Delta T}{T_{h}}=\frac{1440}{2143}=672 \%$
(b) $\quad\left|Q_{h}\right|=1.40 \times 10^{5} \mathrm{~J}, W_{\text {eng }}=0.420\left|Q_{h}\right|$

$$
\mathrm{P}=\frac{W_{\mathrm{eng}}}{\Delta t}=\frac{5.88 \times 10^{4} \mathrm{~J}}{1 \mathrm{~s}}=58.8 \mathrm{~kW}
$$

P22.21 For the Carnot engine, $e_{c}=1-\frac{T_{c}}{T_{h}}=1-\frac{300 \mathrm{~K}}{750 \mathrm{~K}}=0.600$.
Also, $\quad e_{c}=\frac{W_{\text {eng }}}{\left|Q_{h}\right|}$.
so $\quad\left|Q_{h}\right|=\frac{W_{\text {eng }}}{e_{c}}=\frac{150 \mathrm{~J}}{0.600}=250 \mathrm{~J}$.
and $\quad\left|Q_{c}\right|=\left|Q_{h}\right|-W_{\text {eng }}=250 \mathrm{~J}-150 \mathrm{~J}=100 \mathrm{~J}$
(a) $\left|Q_{h}\right|=\frac{W_{\text {eng }}}{e_{S}}=\frac{150 \mathrm{~J}}{0.700}=214 \mathrm{~J}$
$\left|Q_{c}\right|=\left|Q_{h}\right|-W_{\text {eng }}=214 \mathrm{~J}-150 \mathrm{~J}=64.3 \mathrm{~J}$
(b) $\quad\left|Q_{h, \text { net }}\right|=214 \mathrm{~J}-250 \mathrm{~J}=-35.7 \mathrm{~J}$

$$
\left|Q_{c, \text { net }}\right|=64.3 \mathrm{~J}-100 \mathrm{~J}=-35.7 \mathrm{~J}
$$

The net flow of energy by heat from the cold to the hot reservoir without work input, is impossible.

FIG. P22.21(b)
(c) For engine S: $\quad\left|Q_{c}\right|=\left|Q_{h}\right|-W_{\text {eng }}=\frac{W_{\text {eng }}}{e_{S}}-W_{\text {eng }} . \quad$ so $\quad W_{\text {eng }}=\frac{\left|Q_{c}\right|}{\frac{1}{e_{s}}-1}=\frac{100 \mathrm{~J}}{\frac{1}{0.700}-1}=233 \mathrm{~J}$.
and $\left|Q_{h}\right|=\left|Q_{c}\right|+W_{\text {eng }}=233 \mathrm{~J}+100 \mathrm{~J}=333 \mathrm{~J}$.
(d)

$$
\begin{aligned}
& \mid Q_{h, \text { net }}=333 \mathrm{~J}-250 \mathrm{~J}=83.3 \mathrm{~J} \\
& W_{\text {net }}=233 \mathrm{~J}-150 \mathrm{~J}=83.3 \mathrm{~J} \\
& \mid Q_{c, \text { net }}=0
\end{aligned}
$$

The output of 83.3 J of energy from the heat engine by work in a cyclic process without any exhaust by heat is impossible.

(e) Both engines operate in cycles, so $\quad \Delta S_{S}=\Delta S_{\text {camot }}=0$.

For the reservoirs,

$$
\Delta S_{h}=-\frac{\left|Q_{h}\right|}{T_{h}} \text { and } \Delta S_{c}=+\frac{\left|Q_{c}\right|}{T_{c}} .
$$

Thus, $\Delta S_{\text {total }}=\Delta S_{S}+\Delta S_{\text {camot }}+\Delta S_{h}+\Delta S_{c}=0+0-\frac{83.3 \mathrm{~J}}{750 \mathrm{~K}}+\frac{0}{300 \mathrm{~K}}=-0.111 \mathrm{~J} / \mathrm{K}$.
A decrease in total entropy is impossible.
P22.34
(a), (b) The quantity of gas is

$$
\begin{aligned}
& n=\frac{P_{A} V_{A}}{R T_{A}}=\frac{\left(100 \times 10^{3} \mathrm{~Pa}\right)\left(500 \times 10^{-6} \mathrm{~m}^{3}\right)}{(8.314 \mathrm{~J} / \mathrm{m} \mathrm{ol} . \mathrm{K})(293 \mathrm{~K})}=0.0205 \mathrm{~m} \mathrm{ol} \\
& E_{\text {int }, A}=\frac{5}{2} n R T_{A}=\frac{5}{2} P_{A} V_{A}=\frac{5}{2}\left(100 \times 10^{3} \mathrm{~Pa}\right)\left(500 \times 10^{-6} \mathrm{~m}^{3}\right)=125 \mathrm{~J}
\end{aligned}
$$

In process $A B, P_{B}=P_{A}\left(\frac{V_{A}}{V_{B}}\right)^{\gamma}=\left(100 \times 10^{3} \mathrm{~Pa}\right)(8.00)^{140}=1.84 \times 10^{6} \mathrm{~Pa}$

$$
\begin{aligned}
& \quad T_{B}=\frac{P_{B} V_{B}}{n R}=\frac{\left(1.84 \times 10^{6} \mathrm{~Pa}\right)\left(500 \times 10^{-6} \mathrm{~m}^{3} / 8.00\right)}{(0.0205 \mathrm{~mol})(8.314 \mathrm{~J} / \mathrm{m} \mathrm{ol} \cdot \mathrm{~K})}=673 \mathrm{~K} \\
& \\
& E_{\text {int }, B}=\frac{5}{2} n R T_{B}=\frac{5}{2}(0.0205 \mathrm{~mol})(8.314 \mathrm{~J} / \mathrm{m} \text { ol } \cdot \mathrm{K})(673 \mathrm{~K})=287 \mathrm{~J} \\
& \text { so } \quad \\
& \Delta E_{\text {int }, A B}=287 \mathrm{~J}-125 \mathrm{~J}=162 \mathrm{~J}=Q-W_{\text {out }}=0-W_{\text {out }} \quad W_{A B}=-162 \mathrm{~J}
\end{aligned}
$$

Process $B C$ takes us to:

$$
\begin{aligned}
& P_{C}=\frac{n R T_{C}}{V_{C}}=\frac{(0.0205 \mathrm{~mol})(8.314 \mathrm{~J} / \mathrm{m} \mathrm{ol} \cdot \mathrm{~K})(1023 \mathrm{~K})}{62.5 \times 10^{-6} \mathrm{~m}^{3}}=2.79 \times 10^{6} \mathrm{~Pa} \\
& E_{\text {int }, \mathrm{C}}=\frac{5}{2} n R T_{C}=\frac{5}{2}(0.0205 \mathrm{~mol})(8.314 \mathrm{~J} / \mathrm{m} \mathrm{ol} \cdot \mathrm{~K})(1023 \mathrm{~K})=436 \mathrm{~J} \\
& E_{\text {int }, B C}=436 \mathrm{~J}-287 \mathrm{~J}=149 \mathrm{~J}=Q-W_{\text {out }}=Q-0 \\
& Q_{B C}=149 \mathrm{~J}
\end{aligned}
$$

In process $C D$:

$$
\begin{aligned}
& P_{D}=P_{C}\left(\frac{V_{C}}{V_{D}}\right)^{\gamma}=\left(2.79 \times 10^{6} \mathrm{~Pa}\right)\left(\frac{1}{8.00}\right)^{140}=1.52 \times 10^{5} \mathrm{~Pa} \\
& T_{D}=\frac{P_{D} V_{D}}{n R}=\frac{\left(1.52 \times 10^{5} \mathrm{~Pa}\right)\left(500 \times 10^{-6} \mathrm{~m}^{3}\right)}{(0.0205 \mathrm{~mol})(8.314 \mathrm{~J} / \mathrm{m} \mathrm{ol} \cdot \mathrm{~K})}=445 \mathrm{~K} \\
& E_{\text {int }, D}=\frac{5}{2} n R T_{D}=\frac{5}{2}(0.0205 \mathrm{~mol})(8.314 \mathrm{~J} / \mathrm{m} \text { ol. } \mathrm{K})(445 \mathrm{~K})=190 \mathrm{~J} \\
& \Delta E_{\text {int }, C D}=190 \mathrm{~J}-436 \mathrm{~J}=-246 \mathrm{~J}=Q-W_{\text {out }}=0-W_{\text {out }} \\
& W_{C D}=246 \mathrm{~J}
\end{aligned}
$$

and

$$
\begin{aligned}
& \Delta E_{\text {int }, D A}=E_{\text {int }, A}-E_{\text {int }, D}=125 \mathrm{~J}-190 \mathrm{~J}=-65.0 \mathrm{~J}=Q-W_{\text {out }}=Q-0 \\
& Q_{D A}=-65.0 \mathrm{~J}
\end{aligned}
$$

For the entire cycle, $\Delta E_{\mathbf{i n t} \text {, net }}=162 \mathrm{~J}+149-246-65.0=0$. The net work is

$$
\begin{aligned}
& W_{\text {eng }}=-162 \mathrm{~J}+0+246 \mathrm{~J}+0=84.3 \mathrm{~J} \\
& Q_{\text {net }}=0+149 \mathrm{~J}+0-65.0 \mathrm{~J}=84.3 \mathrm{~J}
\end{aligned}
$$

The tables look like:

State	$T(\mathrm{~K})$	$P(\mathrm{kPa})$	$V\left(\mathrm{~cm}^{3}\right)$	$E_{\text {int }}(\mathrm{J})$
A	293	100	500	125
B	673	1840	62.5	287
C	1023	2790	62.5	436
D	445	152	500	190
A	293	100	500	125

Process	$Q(\mathrm{~J})$	output $W(\mathrm{~J})$	$\Delta E_{\text {int }}(\mathrm{J})$
$A B$	0	-162	162
$B C$	149	0	149
$C D$	0	246	-246
$D A$	-65.0	0	-65.0
$A B C D A$	84.3	84.3	0

(c) The input energy is $Q_{h}=149 \mathrm{~J}$, the waste is $\left|Q_{c}\right|=65.0 \mathrm{~J}$, and $W_{\text {eng }}=84.3 \mathrm{~J}$.
(d) The efficiency is: $e=\frac{W_{\text {eng }}}{Q_{h}}=\frac{84.3 \mathrm{~J}}{149 \mathrm{~J}}=0.565$.
(e) Let f represent the angular speed of the crankshaft. Then $\frac{f}{2}$ is the frequency at which we obtain work in the amount of $84.3 \mathrm{~J} /$ cycle:

P22.2
(a) $667 \mathrm{~J} ;(\mathrm{b}) 467 \mathrm{~J}$

P22.4
(a) 30.0%; (b) 60.0%

P22.6 55.4\%
P22.8 77.8 W
P22.10 (a) 869 M J; (b) 330 M J
P22.12 197 kJ
P22.14 $546^{\circ} \mathrm{C}$
P22.16 33.0%
P22.18 (a) 5.12%; (b) $527 \mathrm{TJ} / \mathrm{h}$;
P22.20 453 K
P22.22 (c) 23.7%; see the solution
P22.24 11.8
P22.26 1.17 J
P22.28 (a) 204 W ; (b) 2.43 kW
P22.30 (a) 2.00 ; (b) 3.00 ; (c) 33.3%
P22.32
(a) 512%; (b) 362%

P22.34
(c) $Q_{h}=149 \mathrm{~J} ;\left|Q_{c}\right|=65.0 \mathrm{~J} ; W_{\text {eng }}=84.3 \mathrm{~J}$;
(d) 56.5%; (e) $1.42 \times 10^{3} \mathrm{rev} / \mathrm{m}$ in

P22.36 $488 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$
P22.38
(a) isobaric; (b) 402 kJ ; (c) $120 \mathrm{~kJ} / \mathrm{K}$

P22.40 $327 \mathrm{~J} / \mathrm{K}$
P22.42 $718 \mathrm{~J} / \mathrm{K}$
P22.44 (a) 39.4 L ; (b) -2.50 kJ ; (c) -2.50 kJ ;
(d) $-6.87 \mathrm{~J} / \mathrm{K} ;(\mathrm{e})+916 \mathrm{~J} / \mathrm{K}$

P22.46 0.507 J/K
P22.48 $34.6 \mathrm{~J} / \mathrm{K}$
P22.50 (a) 2 heads and 2 tails; (b) A llheads or alltails;
(c) 2 heads and 2 tails

P22.52 8.36 M J/K
P22.54 32.9 kJ
P22.58 (a) 2.62×10^{3} tons $/ \mathrm{d}$; (b) $\$ 7.65 \mathrm{~m}$ illion $/ \mathrm{yr}$;
(c) $4.06 \times 10^{4} \mathrm{~kg} / \mathrm{s}$

P22.60 $\frac{\mathrm{P} T_{c}}{\left(T_{h}-T_{c}\right) c \Delta T}$
P22.62
(a) 411 kJ ; (b)
(b) 142 kJ
(c) $101 \mathrm{~kJ} ;(\mathrm{d}) 28.9 \%$

P22.66 $n C_{P} \ln 3$
P22.68 no; see the solution
P22.70
(a)

	$P, \mathrm{~atm}$	$V, \mathrm{~L}$
A	25.0	1.97
B	4.14	11.9
C	1.00	32.8
D	6.03	5.44

(b) 2.99 kJ ; (c) 33.3%

