Chapter 6: Momentum And Collisions

The linear momentum p of an object is the product of the
object's mass m and velocity

$$
\overrightarrow{\mathbf{p}}=\mathrm{m} \overrightarrow{\mathbf{v}}
$$

Linear momentum is a vector quantity and has the same direction as the velocity.

SI Unit of Momentum: $\mathrm{kg} \mathrm{m} / \mathrm{s}$ or Ns

When a single, constant force acts on the object, there is an impulse delivered to the object

$\overrightarrow{\mathbf{I}}=\overrightarrow{\mathbf{F}} \Delta \mathrm{t}$

$\overrightarrow{\mathbf{l}} \quad$ is defined as the impulse.
It's a vector quantity, the direction is the same as the direction of the force

Average force in impulse

The impulse of a force is the product of the average force \bar{F} and the time interval Δt during which the force acts:
impulse $=\bar{F} \Delta \mathrm{t}$

Impulse Applied to Auto Collisions

- The most important factor is the collision time, the time it takes the person to come to a rest
- Smaller momentum change and longer impact time reduce the chance of dying in a car crash
- Ways to increase the time
- Air bags
$\bar{F} \Delta t=m \vec{v}_{f}-m \vec{v}_{i}$

Conservation of Momentum

The total momentum of an isolated system is conserved.

$$
\mathrm{m}_{1} \overrightarrow{\mathbf{v}}_{1 \mathrm{i}}+\mathrm{m}_{2} \overrightarrow{\mathbf{v}}_{2 \mathrm{i}}=\mathrm{m}_{1} \overrightarrow{\mathbf{v}}_{1 \mathrm{f}}+\mathrm{m}_{2} \overrightarrow{\mathbf{v}}_{2 f}
$$

- A result of Newton’s Third Law.
- An isolated system is a system where the sum of all external forces is zero.

Conservation of Momentum

- Momentum is a vector quantity
- Direction is important
- Be sure to have the correct signs
- Remember conservation of momentum applies to the system
- You must define the isolated system

Example: Three carts of masses $4.0 \mathrm{~kg}, 10 \mathrm{~kg}$, and 3.0 kg move on a frictionless horizontal track with speeds of $5.0 \mathrm{~m} / \mathrm{s}, 3.0 \mathrm{~m} / \mathrm{s}$, and 4.0 m / s. The carts stick together after colliding. Find the final velocity of the three carts.

Rocket Propulsion

Cars, boats, airplanes accelerate by pushing against something (external). Rocket in space operates by discharging part of itself at high speed.

The rocket is accelerated as a result of the thrust of the exhaust gases.

This represents the inverse of an inelastic collision
${ }^{\text {MMomentum }}$ is conserved
-Kinetic Energy is increased (at the expense of the stored energy of the rocket fuel)

If kinetic energy is also conserved (i.e. elastic collision),

$$
\frac{1}{2} m_{1} v_{1 f}^{2}+\frac{1}{2} m_{2} v_{2 f}^{2}=\frac{1}{2} m_{m} v_{1 i}^{2}+\frac{1}{2} m_{2} v_{2 i}^{2} .
$$

Solve one dimensional elastic collison

Rocket Propulsion, "initial" state

- The initial mass of the rocket is $M+\Delta m$
- M is the mass of the rocket
- m is the mass of the fuel
- The initial velocity of the rocket is $\overrightarrow{\mathbf{V}}$
- The speed of the fuel is v_{e} relative to the rocket

Rocket Propulsion, "final" state

- The rocket's mass is M
- The mass of the fuel, $\Delta \mathrm{m}$, has been ejected, with speed v - v_{e} relative to the Earth
- The rocket's speed has increased to $\overrightarrow{\mathbf{V}}+\Delta \overrightarrow{\mathbf{V}}$

Rocket Propulsion, momentum conservation
$(\mathbf{M}+\Delta \mathrm{m}) \mathbf{v}=\mathbf{M}(\mathbf{v}+\Delta \mathbf{v})+\Delta \mathrm{m}\left(\mathrm{v}-\mathbf{v}_{\mathrm{e}}\right)$
$M \Delta v=v_{e} \Delta m$
And $\Delta m=-\Delta M$, then: $M \Delta v=-v_{e} \Delta M$
$v_{f}-v_{i}=v_{e} \ln \left(M_{i} / M_{f}\right)$
 (ω

Problem Solving for Collisions, 2

- Conservation of Momentum: Write expressions for the x and y components of the momentum of each object before and after the collision
- Write expressions for the total momentum before and after the collision in the x-direction and in the y-direction
- Conservation of Energy: If the collision is elastic, write an expression for the total energy before and after the collision

Problem Solving for Collisions, 2
-
Conservation of Momentum: Write expressions for the x and y components of the momentum of each object before and after the collision -
Write expressions for the total momentum before and after the collision in the x-direction and in the y-direction
- Conservation of Energy: If the collision is
elastic, write an expression for the total energy
before and after the collision

Problem Solving for Collisions

- Coordinates: Set up coordinate axes and define your velocities with respect to these axes
- It is convenient to choose the x - or y - axis to coincide with one of the initial velocities
- Draw: In your sketch, draw and label all the velocities and masses

Problem Solving for Collisions, 3

- Solve for the unknown quantities
- Solve the equations simultaneously
- There will be two equations for inelastic collisions
- There will be three equations for elastic collisions

Summary of Chapter 6

Impulse is product of force and duration
Linear momentum is defined as product of mass and velocity
Impulse-momentum theorem relates the two.
Linear momentum for a closed system is conserved.
Elastic and inelastic collisions.
Rocket propulsion.

