E. REFERENCES CITED

 

1.         Y.-W. Mo, D.E. Savage, B.S. Swartzentruber, and M.G. Lagally, Kinetic pathway in Stranski-Krastanov growth of Ge on Si(001). Physical Review Letters 65, 1020 (1990). http://prl.aps.org/.

2.         Q. Xie, A. Madhukar, P. Chen, and N.P. Kobayashi, Vertically self-organized InAs quantum box islands on GaAs(100). Physical Review Letters 75, 2542 (1995). http://prl.aps.org/.

3.         F. Flack, N. Samarth, V. Nikitin, P.A. Crowell, J. Shi, J. Levy, and D.D. Awschalom, Near-field optical spectroscopy of localized excitons in strained CdSe quantum dots. Physical Review B 54, R17312 (1996). http://prb.aps.org/.

4.         T.I. Kamins and R.S. Williams, Lithographic positioning of self-assembled Ge islands on Si(001). Applied Physics Letters 71, 1201 (1997). http://ojps.aip.org/aplo/.

5.         G. Jin, J.L. Liu, S.G. Thomas, Y.H. Luo, K.L. Wang, and B.-Y. Nguyen, Controlled arrangement of self-organized Ge islands on patterned Si (001) substrates. Applied Physics Letters 75, 2752 (1999). http://ojps.aip.org/aplo/.

6.         A. Irrera, D. Pacifici, M. Miritello, G. Franzo, F. Priolo, F. Iacona, D. Sanfilippo, G. Di Stefano, and P.G. Fallica, Excitation and de-excitation properties of silicon quantum dots under electrical pumping. Applied Physics Letters 81, 1866-1868 (2002). http://ojps.aip.org/aplo/.

7.         S.A. Ding, M. Ikeda, M. Fukuda, S. Miyazaki, and M. Hirose, Quantum confinement effect in self-assembled, nanometer silicon dots. Applied Physics Letters 73, 3881 (1998). http://ojps.aip.org/aplo/.

8.         N.-M. Park, S.-H. Choi, and S.-J. Park, Electron charging and discharging in amorphous silicon quantum dots embedded in silicon nitride. Applied Physics Letters 81, 1092 (2002). http://ojps.aip.org/aplo/.

9.         S. Oda and K. Nishiguchi, Nanocrystalline silicon quantum dots prepared by VHF plasma enhanced chemical vapor deposition. Journal de Physique IV 11, 1065 (2001).

10.       L.E. Brus, Journal of Physical Chemistry 90, 2555 (1986).

11.       M.G. Bawendi, P.J. Carroll, W.L. Wilson, and L.E. Brus, Luminescence properties of CdSe quantum crystallites: Resonance between interior and surface localized states. J. Chem. Phys. 96, 946 (1992).

12.       A.P. Alivisatos, Perspectives on the physical chemistry of semiconductor nanocrystals. Journal of Physical Chemistry 100, 13226 (1996).

13.       J.W. Cahn, Critical point wetting. Journal of Chemical Physics 66, 3667 (1977).

14.       P.G. de Gennes, Wetting: statistics and dynamics. Review of Modern Physics 57, 827 (1985).

15.       R.F. Kayser, M.R. Moldover, and J.W. Schmidt, What controls the thicknesses of wetting layers? J. Chem. Soc. Faraday Trans. II 82, 1701 (1986).

16.       J.O. Indekeu, Line tension at wetting. Int. J. Mod. Phys. B 8, 309 (1994).

17.       B.M. Law, Wetting, adsorption and surface critical phenomena. Progress in Surface Science 66, 159-216 (2001).

18.       E. Cheng, M.W. Cole, W.F. Saam, and J. Treiner, Wetting transitions of classical liquid films: A nearly universal trend. Physical Review B 48, 18214 (1993).

19.       Y.I. Shimansky and E.T. Shimanskaya, Shape of the sulfur hexafluoride coexistence curve near the critical point. High Temperatures - High Pressures 30, 635 (1998).

20.       J. Menaucourt and C. Bockel, Displacement of SF/sub 6/ preadsorbed film on (0001) graphite by xenon adsorption. Journal de Physique 51, 1987 (1990).

21.       O. Sifner and J. Klomfar, Thermodynamic Properties of Xenon from the Triple Point to 800 K with Pressures up to 350 MPa. Journal of physical and chemical reference data 23, 63 (1994).

22.       G.D. Waddill, I.M. Vitomirov, C.M. Aldao, S.G. Anderson, C. Capasso, J.H. Weaver, and Z. Liliental-Weber, Abrupt interfaces with novel structural and electronic properties: Metal-cluster deposition and metal-semiconductor junctions. Physical Review B 41, 5293 (1990). http://prb.aps.org/.

23.       B. Cathrine, D. Fargues, M. Alnot, and J.J. Ehrhardt, A Photoemission-Study of the Adsorption of the 1st and the 2nd Layer of Xenon on Pt(332). Surface Science 259, 162-172 (1991).

24.       G. Haugstad, A. Raisanen, X. Yu, L. Vanzetti, and A. Franciosi, Photoemission-Study of Adsorbed Xe on Gaas(110), Hgte(110), and Hg1-Xcdxte(110) Surfaces. Physical Review B 46, 4102-4109 (1992).

25.       G.D. Waddill, C.M. Aldao, I.M. Vitomirov, S.G. Anderson, C. Capasso, and J.H. Weaver, Ag and Co cluster deposition on GaAs(110): Fermi level pinning in the absence of metal induced gap states and defects. Journal of Vacuum Science & Technology B 7, 950-957 (1989).

26.       C.M. Aldao, G.D. Waddill, S.G. Anderson, and J.H. Weaver, Temperature effects for Ti/GaAs(110) interface formation involving cluster and atom deposition. Physical Review B (Condensed Matter) 40, 2932-9 (1989). http://prb.aps.org/.

27.       Z. Liliental-Weber, E.R. Weber, J. Washburn, and J.H. Weaver, Schottky barrier contacts on defect-free GaAs(110). Applied Physics Letters 56, 2507-9 (1990). http://ojps.aip.org/aplo/.

28.       M.H. Hecht, Role of photocurrent in low-temperature photoemission studies of Schottky-barrier formation. Physical Review B (Condensed Matter) 41, 7918-21 (1990). http://prb.aps.org/.

29.       M. Alonso, R. Cimino, and K. Horn, Surface photovoltage effects in photoemission from metal-GaP(110) interfaces: importance for band-bending evaluation. Physical Review Letters 64, 1947-50 (1990). http://prl.aps.org/.

30.       J. Tang, G. Ge, and L.E. Brus, Gas-Liquid-Solid Phase Transition Model for Two-Dimensional Nanocrystal Self-Assembly on Graphite. J. Phys. Chem. B 106, 5653 (2002).

31.       R.A. Laudise and D.W. Johnson, Jr., Supercritical drying of gels. Journal of Non-Crystalline Solids 79, 155 (1986).

32.       D. Bellet and L.T. Canham, Controlled drying: the key to better quality porous semiconductors. Advanced Materials 10, 487 (1998).

33.       Z. Novak, Z. Knez, M. Drofenik, and I. Ban, Preparation of BaTiO/sub 3/ powders using supercritical CO/sub 2/ drying of gels. Journal of Non-Crystalline Solids 285, 44 (2001).

34.       G.W. Scherer, Journal of Non-Crystalline Solids 147/148, 363 (1992).

35.       G. Amato, V. Bullara, N. Brunetto, and L. Boarino, Drying of porous silicon: A Raman, electron microscopy, and photoluminescence study. Thin Solid Films 276, 204 (1996).

36.       F. Ancilotto, P.B. Lerner, and M.W. Cole, Physics of solvation. Journal of Low Temperature Physics 101, 1123-1146 (1995).

37.       L.J. Brillson, Contacts to Semiconductors. 1993, New Jersey: Noyes Pub.

38.       R.T. Tung, Recent advances in Schottky barrier concepts. Material Science Engineering Reports R 35, 1 (2001).

39.       R.T. Tung, Schottky-barrier formation at single-crystal metal-semiconductor interfaces. Physical Review Letters 52, 461-4 (1984). http://prl.aps.org/.

40.       C.J. Palmstrom, T.L. Cheeks, H.L. Gilchrist, J.G. Zhu, C.B. Carter, B.J. Wilkens, and R. Martin, Effect of orientation on the Schottky barrier height of thermodynamically stable epitaxial metal/GaAs structures. Journal of Vacuum Science & Technology A (Vacuum, Surfaces, and Films) 10, 1946-53 (1992).

41.       K. Hirose, K. Sakano, H. Nohira, and T. Hattori, Valence-band offset variation induced by the interface dipole at the SiO2Si(III) interface. Physical Review B 64, 155325 (2001). http://prb.aps.org/.

42.       L. Sorba, G. Bratina, G. Ceccone, A. Antonini, J.F. Walker, M. Micovic, and A. Franciosi, Tuning AlAs-GaAs band discontinuities and the role of Si-induced local interface dipoles. Physical Review B (Condensed Matter) 43, 2450-3 (1991). http://prb.aps.org/.

43.       J.P. Sullivan, R.T. Tung, M.R. Pinto, and W.R. Graham, Electron transport of inhomogeneous Schottky barriers: a numerical study. Journal of Applied Physics 70, 7403-24 (1991). http://ojps.aip.org/japo/.

44.       R.T. Tung, Chemical bonding and Fermi level pinning at metal-semiconductor interfaces. Physical Review Letters 84, 6078-81 (2000).

45.       R.T. Tung, Formation of an electric dipole at metal-semiconductor interfaces. Physical Review B 64, 205310 (2001). http://prb.aps.org/.

46.       T. Gessmann, Y.L. Li, E.L. Waldron, J.W. Graff, E.F. Schubert, and J.K. Sheu, Ohmic contacts to p-type GaN mediated by polarization fields in thin In/sub x/Ga/sub 1-x/N capping layers. Applied Physics Letters 80, 986 (2002).

47.       T. Arai, H. Sueyoshi, Y. Koide, M. Moriyama, and M. Murakami, Development of Pt-based ohmic contact materials for p-type GaN. Journal of Applied Physics 89, 2826-31 (2001).

48.       J.D. Plummer and P.B. Griffin, Material and Process Limits in Silicon VLSI Technology. Proceedings of the IEEE 89, 240 (2001).

49.       T. Ushiki, M.-C. Yu, Y. Hirano, H. Shimada, M. Morita, and T. Ohmi, Reliable tantalum-gate fully-depleted MOSFET technology featuring low-temperature processing. IEEE Transactions on Electron Devices 44, 1467 (1997).

50.       R.H. Williams, V. Montgomery, R.R. Varma, and A. McKinley, The influence of interfacial layers on the nature of gold contacts to silicon and indium phosphide. Journal of Physics D (Applied Physics) 10, L253-6 (1977).

51.       F. Hasegawa, M. Onomura, C. Mogi, and Y. Nannichi, Reduction of Schottky barrier heights by surface oxidation of GaAs and its influence on DLTS signals for the midgap level EL2. Solid State Electronics 31, 223-8 (1988).

52.       J.R. Waldrop, Metal contact to p-type GaAs with large Schottky barrier heights. Applied Physics Letters 53, 1518-20 (1988).

53.       J.C. Costa, F. Williamson, T.J. Miller, K. Beyzavi, M.I. Nathan, D.S.L. Mui, S. Strite, and H. Morkoc, Barrier height variation in Al/GaAs Schottky diodes with a thin silicon interfacial layer. Applied Physics Letters 58, 382-4 (1991). http://ojps.aip.org/aplo/.

54.       M. Cantile, L. Sorba, S. Yildirim, P. Faraci, G. Biasiol, A. Franciosi, T.J. Miller, and M.I. Nathan, Silicon-induced local interface dipole in Al/GaAs(001) Schottky diodes. Applied Physics Letters 64, 988-90 (1994). http://ojps.aip.org/aplo/.

55.       R.H. Tredgold and Z.I. El-Badawy, Increase of Schottky barrier height at GaAs surfaces by carboxylic acid monolayers and multilayers. Journal of Physics D (Applied Physics) 18, 103-9 (1985).

56.       I.H. Campbell, S. Rubin, T.A. Zawodzinski, J.D. Kress, R.L. Martin, D.L. Smith, N.N. Baraskkov, and J.P. Ferraris, Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers. Physical Review B (Condensed Matter) 54, R14321-4 (1996).

57.       A. Vilan, A. Shanzer, and D. Cahen, Molecular control over Au/GaAs diodes. Nature 404, 166-8 (2000).

58.       V. Montgomery, R.H. Williams, and G.P. Srivastava, The influence of adsorbed layers in controlling Schottky barriers. Journal of Physics C (Solid State Physics) 14, L191-4 (1981).

59.       J.R. Waldrop, Direct variation of metal-GaAs Schottky barrier height by the influence of interface S, Se, and Te. Applied Physics Letters 47, 1301-3 (1985). http://ojps.aip.org/aplo/.

60.       J.H. Golden, C.J. Hawker, and P.S. Ho, Designing porous low-k dielectrics. Semiconductor International 24, 79 (2001).

61.       A. Jain, S. Rogojevic, S. Ponoth, N. Agarwal, I. Matthew, W.N. Gill, P. Persans, A. Tomozawa, J.L. Plawsky, and E. Simonyi, Porous silica materials as low-k dielectrics for electronic and optical interconnects. Thin Solid Films 398-399, 513 (2001).

62.       A.M. Padovani, L. Rhodes, L. Riester, G. Lohman, B. Tsuie, J. Conner, S.A.B. Allen, and P.A. Kohl, Porous methylsilsesquioxane for low-k dielectric applications. Electrochemical and Solid State Letters 4, F25-F28 (2001).

63.       D.G. Shamiryan, M.R. Baklanov, S. Vanhaelemeersch, and K. Maex, Controllable change of porosity of 3-methylsilane low-k dielectric film. Electrochemical and Solid State Letters 4, F3-F5 (2001).

64.       J.J. Si, H. Ono, K. Uchida, S. Nozaki, H. Morisaki, and N. Itoh, Correlation between the dielectric constant and porosity of nanoporous silica thin films deposited by the gas evaporation technique. Applied Physics Letters 79, 3140 (2001). http://ojps.aip.org/aplo/.

65.       R.T. Tung, Surface nucleation of Ti silicides at elevated temperatures. Applied Physics Letters 68, 1933-1935 (1996). http://ojps.aip.org/aplo/.

66.       R.T. Tung, Epitaxial CoSi2 and NiSi2 Thin-Films. Materials Chemistry and Physics 32, 107-133 (1992).

67.       W.J. Moore, Physical Chemistry, 4th Ed. 1972, Englewood Cliffs, NJ: Prentice-Hall.