References

 

1.         A. Franciosi and C.G. Van de Walle, Heterojunction band offset engineering, Surf. Sci. Rep. 25, 1-40 (1996).

2.         R.T. Tung, Recent advances in Schottky barrier concepts, Mat. Sci. Eng. R 35, 1 (2001).

3.         H. Ishii, K. Sugiyama, E. Ito, and K. Seki, Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces, Adv. Mater. 11, 605-625 (1999).

4.         D. Cahen and A. Kahn, Electron energetics at surfaces and interfaces: concepts and experiments, Adv. Mater. 15, 271-277 (2003).

5.         J. Tersoff, Schottky barrier heights and the continuum of gap states, Phys. Rev. Lett. 52, 465-8 (1984).

6.         R.T. Tung, Chemical bonding and Fermi level pinning at metal-semiconductor interfaces, Phys. Rev. Lett. 84, 6078-81 (2000).

7.         R.T. Tung, Formation of an electric dipole at metal-semiconductor interfaces, Phy. Rev. B 64, 205310 (2001).

8.         M.O. Aboelfotoh, C. Fröjdh, and C.S. Petersson, Schottky-barrier behavior of metals on n- and p-type 6H-SiC, Phys. Rev. B 67, 075312 (2003).

9.         R.A. McKee, F.J. Walker, M. Buongiorno Nardelli, W.A. Shelton, and G.M. Stocks, The Interface Phase and the Schottky Barrier for a Crystalline Dielectric on Silicon, Science 300, 1726-1730 (2003).

10.        J.L. Freeouf, Are interface states consistent with Schottky barrier measurements?, Appl. Phys. Lett. 41, 285 (1982).

11.        R.T. Tung, Schottky barrier height-do we really understand what we measure?, J. Vac. Sci. Technol. B 11, 1546-52 (1993).

12.        R.T. Tung, Schottky-barrier formation at single-crystal metal-semiconductor interfaces, Phys. Rev. Lett. 52, 461-4 (1984).

13.        Y.F. Dong, S.J. Wang, J.W. Chai, Y.P. Feng, and A.C.H. Huan, Impact of interface structure on Schottky-barrier height for Ni/ZrO[sub 2](001) interfaces, Appl. Phys. Lett. 86, 132103-3 (2005).

14.        Z.Q. Shi and W.A. Anderson, Cryogenic Processing of Metal/Gaas Schottky Diodes, Solid-State Electron. 35, 1427-1432 (1992).

15.        H. Hasegawa, T. Sato, and T. Hashizume, Evolution mechanism of nearly pinning-free platinum/n-type indium phosphide interface with a high Schottky barrier height by in situ electrochemical process, J. Vac. Sci. Technol. B 15, 1227-1235 (1997).

16.        Z.Q. Shi and W.A. Anderson, Current transport in Pd/n-InP diodes formed at room and low temperature, J. Appl. Phys. 72, 3803-7 (1992).

17.        H.J. Lee, W.A. Anderson, H. Hardtdegen, and H. Luth, Barrier Height Enhancement of Schottky Diodes on N- In0.53ga0.47as by Cryogenic Processing, Appl. Phys. Lett. 63, 1939-1941 (1993).

18.        A. Wang and W.A. Anderson, Metal-semiconductor contacts to n-ZnS0.07Se0.93, J. Electron. Mater. 25, 201-205 (1996).

19.        S.A. Clark, S.P. Wilks, A. Kestle, D.I. Westwood, and M. Elliott, Improvements to the Schottky barrier heights of intimate metal- InGaAs contacts by low temperature metallisation, Surf. Sci. 352, 850-854 (1996).

20.        H.-T. Wang, B.S. Kang, F. Ren, A. Herrero, A.M. Gerger, B.P. Gila, S.J. Pearton, H. Shen, J.R. LaRoche, and K.V. Smith, Thermal stability of Au schottky diodes on GaAs deposited at either 77 or 300 K, J. Electrochem. Soc. 153, G787-G790 (2006).

21.        A.M. Herrero, A.M. Gerger, B.P. Gila, S.J. Pearton, H.-T. Wang, S. Jang, T. Anderson, J.J. Chen, B.S. Kang, and F. Ren, Interfacial differences in enhanced schottky barrier height Au/n-GaAs diodes deposited at 77 K, Appl. Surf. Sci. In Press, Corrected Proof, (2006).

22.        J.R. Waldrop, Direct variation of metal-GaAs Schottky barrier height by the influence of interface S, Se, and Te, Appl. Phys. Lett. 47, 1301-3 (1985).

23.        S. Hohenecker, T.U. Kampen, W. Braun, and D.R.T. Zahn, Influence of sulfur on the Sb-GaAs(001) interface, Surf. Sci. 433-435, 347-51 (1999).

24.        S. Meskinis, K. Slapikas, V. Grigaliunas, J. Matukas, and S. Smetona, The influence of annealing on current-voltage characteristics of H/sub 2/SeO/sub 3/ treated Al-nGaAs Schottky contact, Phys. Stat. Sol. A 180, 499-505 (2000).

25.        J. Her, H. Lim, C.H. Kim, I.K. Han, J.I. Lee, and K.N. Kang, Effects of sulfur treatments on metal-InP Schottky contact and Si/sub 3/N/sub 4/-InP interfaces, J. Korean Inst. Tel. Elec. 31A, 56-63 (1994).

26.        S.-H. Kim, T.-Y. Seong, and H.-K. Kim, Electrical characteristics of Pt Schottky contacts on sulfide-treated n -type ZnO, Appl. Phys. Lett. 86, 022101-1 (2005).

27.        K. Ikeda, Y. Yamashita, N. Sugiyama, N. Taoka, and S.-i. Takagi, Modulation of NiGe/Ge Schottky barrier height by sulfur segregation during Ni germanidation, Appl. Phys. Lett. 88, 152115 (2006).

28.        Q.T. Zhao, U. Breuer, E. Rije, S. Lenk, and S. Mantl, Tuning of NiSi/Si Schottky barrier heights by sulfur segregation during Ni silicidation, Appl. Phys. Lett. 86, 062108-3 (2005).

29.        M. Tao, D. Udeshi, N. Basit, E. Maldonado, and W.P. Kirk, Removal of dangling bonds and surface states on silicon (001) with a monolayer of selenium, Appl. Phys. Lett. 82, 1559-1561 (2003).

30.        M. Yamada, A.K. Wahi, T. Kendelewicz, and W.E. Spicer, Fermi-level pinning on ideally terminated InP(110) surfaces, Phys. Rev. B 45, 3600-5 (1992).

31.        H. Nobusawa and H. Ikoma, Antimony passivation of InP, Jpan. J. Appl. Phys. Part 1 32, 3713-19 (1993).

32.        Y. Sakamoto, T. Sugino, T. Miyazaki, and J. Shirafuji, Enhancement of barrier height of Au/PN/sub x//InP Schottky diodes by in situ surface treatment, Electron. Lett. 31, 1104-5 (1995).

33.        D.T. Quan and H. Hbib, High barrier height Au/n-type InP Schottky contacts with a PO/sub x/N/sub y/H/sub z/ interfacial layer, Solid-St. Electron. 36, 339-44 (1993).

34.        H. Sawatari and O. Oda, Schottky diodes on n-type InP with CdOx interfacial layers grown by the absorption and oxidation method, J. Appl. Phys. 72, 5004-6 (1992).

35.        K. Hattori and Y. Torii, A new method to fabricate Au/n-type InP Schottky contacts with an interfacial layer, Solid-St. Electron. 34, 527-31 (1991).

36.        F. Hasegawa, M. Onomura, C. Mogi, and Y. Nannichi, Reduction of Schottky barrier heights by surface oxidation of GaAs and its influence on DLTS signals for the midgap level EL2, Solid-St. Electron. 31, 223-8 (1988).

37.        J. Nakamura, H. Niu, and S. Kishino, Barrier height of InP Schottky diodes prepared by means of UV oxidation, Jpn. J. Appl. Phys. Part 1 32, 699-703 (1993).

38.        H. Hasegawa, H. Ishii, and K. Koyanagi, Formation mechanism of Schottky barriers on MBE-grown GaAs surfaces subjected to various treatments, Appl. Surf. Sci. 56-58, 317-24 (1992).

39.        J.C. Costa, T.J. Miller, F. Williamson, and M.I. Nathan, Unpinned GaAs Schottky barriers with an epitaxial silicon layer, J. Appl. Phys. 70, 2173-84 (1991).

40.        M. Cantile, L. Sorba, S. Yildirim, P. Faraci, G. Biasiol, A. Franciosi, T.J. Miller, and M.I. Nathan, Silicon-induced local interface dipole in Al/GaAs(001) Schottky diodes, Appl. Phys. Lett. 64, 988-90 (1994).

41.        C. Berthod, N. Binggeli, and A. Baldereschi, Schottky barrier tuning with heterovalent interlayers: Al/Ge/GaAs versus Al/Si/GaAs, J. Vac. Sci. Technol. B 18, 2114-18 (2000).

42.        J. Ivanco, H. Kobayashi, J. Almeida, and G. Margaritondo, Unpinning of the Au/GaAs interfacial Fermi level by means of ultrathin undoped silicon interlayer inclusion, J. Appl. Phys. 87, 795-800 (2000).

43.        C. Marinelli, L. Sorba, M. Lazzarino, D. Kumar, E. Pelucchi, B.H. Muller, D. Orani, S. Rubini, A. Franciosi, S. De Franceshi, and F. Beltran, Tunable Schottky barrier contacts to InxGa1-xAs, J. Vac. Sci. Technol. B 18, 2119-2127 (2000).

44.        I.H. Campbell, S. Rubin, T.A. Zawodzinski, J.D. Kress, R.L. Martin, D.L. Smith, N.N. Baraskkov, and J.P. Ferraris, Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers, Phys. Rev. B 54, R14321-4 (1996).

45.        L. Zuppiroli, L. Si-Ahmed, K. Kamaras, F. Nuesch, M.N. Bussac, D. Ades, A. Siove, E. Moons, and M. Gratzel, Self-assembled monolayers as interfaces for organic opto-electronic devices, Euro. Phys. J. B 11, 505-12 (1999).

46.        Y. Selzer and D. Cahen, Fine tuning of Au/SiO2/Si diodes by varying interfacial dipoles using molecular monolayers, Adv. Mater. 13, 508-+ (2001).

47.        J.W.P. Hsu, Y.L. Loo, D.V. Lang, and J.A. Rogers, Nature of electrical contacts in a metal–molecule–semiconductor system, J. Vac. Sci. Technol. B 21, 1928-1935 (2003).

48.        T. Kampen, A. Bekkali, I. Thurzo, D.R.T. Zahn, A. Bolognesi, T. Ziller, A. Di Carlo, P. Lugli, and T. Kampen, Barrier heights of organic modified Schottky contacts: Theory and experiment, Appl. Surf. Sci. 234, 313-320 (2004).

49.        W. Wang, T. Lee, and M.A. Reed, Mechanism of electron conduction in self-assembled alkanethiol monolayer devices, Phys. Rev. B 68, 035416 (2003).

50.        S. Lodha, P. Carpenter, and D.B. Janes, Effect of contact properties on current transport in metal/molecule/GaAs devices, J. Appl. Phys. 99, 024510-9 (2006).

51.        A. Vilan, A. Shanzer, and D. Cahen, Molecular control over Au/GaAs diodes, Nature 404, 166-8 (2000).

52.        H. Haick, M. Ambrico, T. Ligonzo, R.T. Tung, and D. Cahen, Controlling semiconductor/metal junction barriers by incomplete, nonideal molecular monolayers, J. Am. Chem. Soc. 128, 6854-6869 (2006).

53.        J.E. Pattison, M.F. Daniel, D.A. Anderson, P.R. Tapster, N. Apsley, and M.J. Slater, A 0.85 eV Au-Langmuir film-InP Schottky barrier, Ext. Abs. ESSDERC 64-5 (1981).

54.        R.H. Tredgold and Z.I. El-Badawy, Increase of Schottky barrier height at GaAs surfaces by carboxylic acid monolayers and multilayers, J. Phys. D 18, 103-9 (1985).

55.        A. Natan, Y. Zidon, Y. Shapira, and L. Kronik, Cooperative effects and dipole formation at semiconductor and self-assembled-monolayer interfaces, Phys. Rev. B 73, 193310-4 (2006).

56.        L.S. Yu, D. Qiao, L. Jia, S.S. Lau, Y. Qi, and K.M. Lau, Study of Schottky barrier of Ni on p-GaN, Appl. Phys. Lett. 79, 4536-4538 (2001).

57.        P.J. Hartlieb, A. Roskowski, R.F. Davis, W. Platow, and R.J. Nemanich, Pd growth and subsequent Schottky barrier formation on chemical vapor cleaned p-type GaN surfaces, J. Appl. Phys. 91, 732-738 (2002).

58.        Y.-J. Lin, Application of the thermionic field emission model in the study of a Schottky barrier of Ni on p-GaN from current--voltage measurements, Appl. Phys. Lett. 86, 122109-3 (2005).

59.        D.C. Look and B. Claflin, P-type doping and devices based on ZnO, physica status solidi (b) 241, 624-630 (2004).

60.        M. Kurimoto, A.B.M.A. Ashrafi, M. Ebihara, K. Uesugi, H. Kumano, and I. Suemune, Formation of ohmic contacts to p-type ZnO, physica status solidi (b) 241, 635-639 (2004).

61.        U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98, 041301-103 (2005).

62.        K. Ip, G.T. Thaler, H. Yang, S. Youn Han, Y. Li, D.P. Norton, S.J. Pearton, S. Jang, and F. Ren, Contacts to ZnO, J. Cryst. Growth 287, 149-156 (2006).

63.        F.A. Trumbore, Solid solubility limit of dopants in germanium, Bell Syst. Tech. J. 39, 205 (1960).

64.        C.O. Chui, L. Kulig, J. Moran, W. Tsai, and K.C. Saraswat, Germanium n-type shallow junction activation dependences, Appl. Phys. Lett. 87, 091909-3 (2005).

65.        D. Han, Y. Wang, D. Tian, W. Wang, X. Liu, J. Kang, and R. Han, Studies of Ti- and Ni-germanide Schottky contacts on n-Ge(1 0 0) substrates, Microelectron. Eng. 82, 93-98 (2005).

66.        S.A. Chambers, Y. Liang, Z. Yu, R. Droopad, and J. Ramdani, Band offset and structure of SrTiO/sub 3/ /Si(001) heterojunctions, J. Vac. Sci. Technol. A 19, 934-9 (2001).

67.        V.V. Afanas'ev, M. Houssa, A. Stesmans, and M.M. Heyns, Band alignments in metal–oxide–silicon structures with atomic-layer deposited Al2O3 and ZrO2, J. Appl. Phys. 91, 3079-3084 (2002).

68.        P.W. Peacock and J. Robertson, Bonding, Energies, and Band Offsets of Si-ZrO2 and HfO2 Gate Oxide Interfaces, Phys. Rev. Lett. 92, 057601 (2004).

69.        J.D. Plummer and P.B. Griffin, Material and Process Limits in Silicon VLSI Technology, Proc. IEEE 89, 240 (2001).

70.        T. Ushiki, M.-C. Yu, Y. Hirano, H. Shimada, M. Morita, and T. Ohmi, Reliable tantalum-gate fully-depleted MOSFET technology featuring low-temperature processing, IEEE Trans. Elec. Dev. 44, 1467 (1997).

71.        Y.-C. Yeo, T.-J. King, and C.M. Hu, Metal-dielectric band alignment and its implications for metal gate complementary metal-oxide-semiconductor technology, J. Appl. Phys. 92, 7266-71 (2002).

72.        S. Beckx, M. Demand, S. Locorotondo, K. Henson, M. Claes, V. Paraschiv, D. Shamiryan, P. Jaenen, W. Boullart, and S. Degendt, Implementation of high-k and metal gate materials for the 45 nm node and beyond: gate patterning development, Microelectron. Reliab. 45, 1007-1011 (2005).

73.        H.N. Alshareef, K. Choi, H.C. Wen, H. Luan, H. Harris, Y. Senzaki, P. Majhi, B.H. Lee, R. Jammy, S. Aguirre-Tostado, B.E. Gnade, and R.M. Wallace, Composition dependence of the work function of Ta[sub 1 - x]Al[sub x]N[sub y] metal gates, Appl. Phys. Lett. 88, 072108-3 (2006).

74.        S. Chatterjee, Y. Kuo, J. Lu, J.-Y. Tewg, and P. Majhi, Electrical reliability aspects of HfO2 high-k gate dielectrics with TaN metal gate electrodes under constant voltage stress, Microelectron. Reliab. 46, 69-76 (2006).

75.        K.W. Hipps, MOLECULAR ELECTRONICS: It's All About Contacts, Science 294, 536-537 (2001).

76.        A. Nitzan and M.A. Ratner, Electron Transport in Molecular Wire Junctions, Science 300, 1384-1389 (2003).

77.        A. Salomon, D. Cahen, S.M. Lindsay, J. Tomfohr, V.B. Engelkes, and C.D. Frisbie, Comparison of electronic transport measurements on organic molecules, Adv. Mater. 15, 1 (2003).

78.        W.R. Salaneck, M. Lo?gdlund, J. Birgersson, P. Barta, R. Lazzaroni, and J.L. Bre?das, Electronic and chemical structure of conjugated polymer surfaces and interfaces: Implications for polymer-based electronic devices, Synth Met 85, 1219-1220 (1997).

79.        A.V. Walker, T.B. Tighe, B.C. Haynie, S. Uppili, N. Winograd, and D.L. Allara, Chemical pathways in the interactions of reactive metal atoms with organic surfaces: Vapor deposition of Ca and Ti on a methoxy-terminated alkanethiolate monolayer on Au, J Phys Chem B 109, 11263-11272 (2005).

80.        G.C. Herdt, D.R. Jung, and A.W. Czanderna, Weak interactions between deposited metal overlayers and organic functional groups of self-assembled monolayers, Prog. Surf. Sci. 50, 103-129 (1995).

81.        B. de Boer, M.M. Frank, Y.J. Chabal, W. Jiang, E. Garfunkel, and Z. Bao, Metallic Contact Formation for Molecular Electronics: Interactions between Vapor-Deposited Metals and Self-Assembled Monolayers of Conjugated Mono- and Dithiols, Langmuir 20, 1539 -1542 (2004).

82.        C.P. Collier, G. Mattersteig, E.W. Wong, Y. Luo, K. Beverly, J. Sampaio, F.M. Raymo, J.F. Stoddart, and J.R. Heath, A [2]Catenane-Based Solid State Electronically Reconfigurable Switch, Science 289, 1172-75 (2000).

83.        J. Chen, M.A. Reed, A.M. Rawlett, and J.M. Tour, Large on-off ratios and negative differential resistance in a molecular electronic device, Science 286, 1550-2 (1999).

84.        C. Zhou, M.R. Deshpande, M.A. Reed, L. Jones, II, and J.M. Tour, Nanoscale metal/self-assembled monolayer/metal heterostructures, Appl. Phys. Lett. 71, 611-13 (1997).

85.        R.M. Metzger, T. Xu, and I.R. Peterson, Electrical Rectification by a Monolayer of Hexadecylquinolinium Tricyanoquinodimethanide Measured between Macroscopic Gold Electrodes, J. Phys. Chem. B 105, 7280-7290 (2001).

86.        M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, and J.M. Tour, Conductance of a molecular junction, Science 278, 252-254 (1997).

87.        J. Reichert, R. Ochs, D. Beckmann, H.B. Weber, M. Mayor, and H. von Lohneysen, Driving current through single organic molecules, Phys. Rev. Lett. 88, art. no.-176804 (2002).

88.        C. Zhou, C.J. Muller, M.R. Deshpande, J.W. Sleight, and M.A. Reed, Microfabrication of a Mechanically Controllable Break Junction in Silicon, Appl. Phys. Lett. 67, 1160-1162 (1995).

89.        H. Park, A.K.L. Lim, A.P. Alivisatos, J. Park, and P.L. McEuen, Fabrication of metallic electrodes with nanometer separation by electromigration, Appl. Phys. Lett. 75, 301-303 (1999).

90.        E.A. Speets, B.J. Ravoo, F.J.G. Roesthuis, F. Vroegindeweij, D.H.A. Blank, and D.N. Reinhoudt, Fabrication of Arrays of Gold Islands on Self-Assembled Monolayers Using Pulsed Laser Deposition through Nanosieves, Nano Lett. ASAP Article 10.1021 (2004).

91.        M. Dorogi, J. Gomez, R. Osifchin, R.P. Andres, and R. Reifenberger, Room-temperature Coulomb blockade from a self-assembled molecular nanostructure, Phys. Rev. B 52, 9071–9077 (1995).

92.        X.D. Cui, A. Primak, X. Zarate, J. Tomfohr, O. F. Sankey, A. L. Moore, T. A. Moore, D. Gust, G. Harris, and S. M. Lindsay, Reproducible Measurement of Single-Molecule Conductivity, Science 294, 571 (2001).

93.        T. Ohgi, H.-Y. Sheng, and H. Nejoh, Au particle deposition onto self-assembled monolayers of thiol and dithiol molecules, Appl. Surf. Sci. 130-132, 919-924 (1998).

94.        B. Wang, X. Xiao, and P. Sheng, Growth and characterization of Au clusters on alkanethiol self-assembled monolayers, J. Vac. Sci. Technol. 18, 2351-2358 (2000).

95.        D.I. Gittins, D. Bethell, D.J. Schiffrin, and R.J. Nichols, A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups, Nature 408, 67-69 (2000).

96.        I. Amlani, A.M. Rawlett, L.A. Nagahara, and R.K. Tsui, An approach to transport measurements of electronic molecules, Appl. Phys. Lett. 80, 2761-3 (2002).

97.        H.O. Finklea and D.D. Hanshew, Electron-transfer kinetics in organized thiol monolayers with attached pentaammine(pyridine)ruthenium redox centers, J. Am. Chem. Soc. 114, 3173 - 3181 (1992).

98.        J.F. Smalley, S.W. Feldberg, C.E.D. Chidsey, M.R. Linford, M.D. Newton, and Y.-P. Liu, The Kinetics of Electron Transfer Through Ferrocene-Terminated Alkanethiol Monolayers on Gold, J. Phys. Chem. 99, 13141 - 13149 (1995).

99.        S.B. Sachs, S.P. Dudek, R.P. Hsung, L.R. Sita, J.F. Smalley, M.D. Newton, S.W. Feldberg, and C.E.D. Chidsey, Rates of Interfacial Electron Transfer through pi-Conjugated Spacers, J. Am. Chem. Soc. 119, 10563 -10564 (1997).

100.      K. Weber, L. Hockett, and S. Creager, Long-Range Electronic Coupling between Ferrocene and Gold in Alkanethiolate-based Monolayers on Electrodes, J. Phys. Chem. B 101, 8286 -8291 (1997).

101.      S. Creager, C.J. Yu, C. Bamdad, S. O'Connor, T. MacLean, E. Lam, Y. Chong, G.T. Olsen, J. Luo, M. Gozin, and J.F. Kayyem, Electron Transfer at Electrodes through Conjugated "Molecular Wire" Bridges, J. Am. Chem. Soc. 121, 1059 -1064 (1999).

102.      H. Hagenström, M.J. Esplandiú, and D.M. Kolb, Functionalized Self-Assembled Alkanethiol Monolayers on Au(111) Electrodes: 2. Silver Electrodeposition, Langmuir 17, 839 -848 (2001).

103.      A. Vilan and D. Cahen, Soft Contact Deposition onto Molecularly Modified GaAs. Thin Metal Film Flotation: Principles and Electrical Effects, Adv. Funct. Mater. 12, 795-807 (2002).

104.      R.P. Andres, T. Bein, M. Dorogi, S. Feng, J. I. Henderson, C. P. Kubiak, W. Mahoney, R. G. Osifchin, and R. Reifenberger, ``Coulomb Staircase'' at Room Temperature in a Self-Assembled Molecular Nanostructure, Science 272, 1323-1325 (1996).

105.      H. Dai, E.W. Wong, and C.M. Lieber, Probing Electrical Transport in Nanomaterials: Conductivity of Individual Carbon Nanotubes, Science 272, 523-526 (1996).

106.      F.F. Fan, J. Yang, S.M. Dirk, D.W. Price, D. Kosynkin, J.M. Tour, and A.J. Bard, Determination of the Molecular Electrical Properties of Self-Assembled Monolayers of Compounds of Interest in Molecular Electronics, J. Am. Chem. Soc. 123, 2454 (2001).

107.      X.D. Cui, X. Zarate, J. Tomfohr, O.F. Sankey, A. Primak, A.L. Moore, T.A. Moore, D. Gust, G. Harris, and S.M. Lindsay, Making electrical contacts to molecular monolayers, Nanotechnol. 13, 5-14 (2002).

108.      D.J. Wold, R. Haag, M.A. Rampi, and C.D. Frisbie, Distance dependence of electron tunneling through self- assembled monolayers measured by conducting probe atomic force microscopy: Unsaturated versus saturated molecular junctions, J. Phys. Chem. B 106, 2813-2816 (2002).

109.      M.T. Cygan, T.D. Dunbar, J.J. Arnold, L.A. Bumm, N.F. Shedlock, T.P. Burgin, I. L. Jones, D.L. Allara, J.M. Tour, and P.S. Weiss, Insertion, Conductivity, and Structures of Conjugated Organic Oligomers in Self-Assembled Alkanethiol Monolayers on Au{111}, J. Am. Chem. Soc. 120, 2721 -2732 (1998).

110.      S. Datta, W. Tian, S. Hong, R. Reifenberger, J.I. Henderson, and C.P. Kubiak, Current-Voltage Characteristics of Self-Assembled Monolayers by Scanning Tunneling Microscopy, Phys. Rev. Lett. 79, 2530 (1997).

111.      A. Dhirani, P.-H. Lin, P. Guyot-Sionnest, R.W. Zehner, and L.R. Sita, Self-assembled molecular rectifiers, J. Chem. Phys. 106, 5249-5253 (1997).

112.      V.J. Langlais, R.R. Schlittler, H. Tang, A. Gourdon, C. Joachim, and J.K. Gimzewski, Spatially Resolved Tunneling along a Molecular Wire, Phys. Rev. Lett. 83, 2809–2812 (1999).

113.      S.F. Alvarado, L. Rossi, P. Muller, and W. Riess, Charge-carrier injection into CuPc thin films: a scanning tunneling microscopy study, Synth. Metals 122, 73-77 (2001).

114.      G.V. Nazin, X.H. Qiu, and W. Ho, Visualization and Spectroscopy of a Metal-Molecule-Metal Bridge, Science 302, 77-81 (2003).

115.      J.G. Kushmerick, D.B. Holt, S.K. Pollack, M.A. Ratner, J.C. Yang, T.L. Schull, J. Naciri, M.H. Moore, and R. Shashidhar, Effect of Bond-Length Alternation in Molecular Wires, J. Am. Chem. Soc. 124, 10654-10655 (2002).

116.      J.G. Kushmerick, J. Naciri, J. C. Yang, and R. Shashidhar, Conductance Scaling of Molecular Wires in Parallel, Nano Lett. 3, 897-900 (2003).

117.      K. Slowinski, R.V. Chamberlain, C.J. Miller, and M. Majda, Through-Bond and Chain-to-Chain Coupling. Two Pathways in Electron Tunneling through Liquid Alkanethiol Monolayers on Mercury Electrodes, J. Am. Chem. Soc. 119, 11910 -11919 (1997).

118.      S. Frank, P. Poncharal, Z.L. Wang, and W.A.d. Heer, Carbon Nanotube Quantum Resistors, Science 280, 1744-1746 (1998).

119.      R.E. Holmlin, R. Haag, M.L. Chabinyc, R.F. Ismagilov, A.E. Cohen, A. Terfort, M.A. Rampi, and G.M. Whitesides, Electron Transport through Thin Organic Films in Metal-Insulator-Metal Junctions Based on Self-Assembled Monolayers, J. Am. Chem. Soc. 123, 5075 (2001).

120.      M.A. Rampi and G.M. Whitesides, A versatile experimental approach for understanding electron transport through organic materials, Chem. Phys. 281, 373-91 (2002).

121.      Y. Xia and G.M. Whitesides, Soft Lithography, Angew. Chem. Int. Ed. 37, 550-575 (1998).

122.      P.M.S. John and H.G. Craighead, Microcontact printing and pattern transfer using trichlorosilanes on oxide substrates, Appl. Phys. Lett. 68, 1022-1024 (1996).

123.      L. Libioulle, A. Bietsch, H. Schmid, B. Michel, and E. Delamarche, Contact-Inking Stamps for Microcontact Printing of Alkanethiols on Gold, Langmuir 15, 300 -304 (1999).

124.      M. Geissler, A. Bernard, A. Bietsch, H. Schmid, B. Michel, and E. Delamarche, Microcontact-Printing Chemical Patterns with Flat Stamps, J. Am. Chem. Soc. 122, 6303 -6304 (2000).

125.      H.X. He, Q.G. Li, Z.Y. Zhou, H. Zhang, S.F.Y. Li, and Z.F. Liu, Fabrication of Microelectrode Arrays Using Microcontact Printing, Langmuir 16, 9683 -9686 (2000).

126.      T.L. Breen, P.M. Fryer, R.W. Nunes, and M.E. Rothwell, Patterning Indium Tin Oxide and Indium Zinc Oxide Using Microcontact Printing and Wet Etching, Langmuir 18, 194 -197 (2002).

127.      Y.-L. Loo, R.L. Willett, K.W. Baldwin, and J.A. Rogers, Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics, Appl. Phys. Lett. 81, 562-564 (2002).

128.      Y.-L. Loo, D.V. Lang, J.A. Rogers, and J.W.P. Hsu, Electrical contacts to molecular layers by nanotransfer printing, Nano Lett. 3, 913-917 (2003).

129.      Y.-L. Loo, R.L. Willett, K.W. Baldwin, and J.A. Rogers, Interfacial Chemistries for Nanoscale Transfer Printing, J. Am. Chem. Soc. 124, 7654 (2002).

130.      H. Haick, M. Ambrico, J. Ghabboun, T. Ligonzo, and D. Cahen, Contacting organic molecules by metal evaporation, Phys. Chem. Chem. Phys. 6, 4538-4541 (2004).

131.      S.E. Ogun and R.T. Tung, Combined UHV and Liquid Phase (CULP) Processing of Self-Assembled Nanostructures, 879E, Z10.36.1 (2005).

132.      E. Kaxiras, Semiconductor-surface restoration by valence-mending adsorbates: Application to Si(100):S and Si(100):Se, Phys. Rev. B J1  - PRB 43, 6824 LP  - 6827 (1991).

133.      J.P. Lacharme, N. Benazzi, and C.A. Sebenne, Compositional and electronic properties of Si(001)2 x 1 upon diatomic sulfur interaction, Surf. Sci. 433-435, 415-419 (1999).

134.      R. Saiz-Pardo, R. Perez, F.J. Garcia-Vidal, R. Whittle, and F. Flores, Systematic theoretical studies of the Schottky barrier control by passivating atomic intralayers, Surf. Sci. 426, 26-37 (1999).

135.      M. Bruening, E. Moons, D. Cahen, and A. Shanzer, Controlling the Work Function of CdSe by Chemisorption of Benzoic Acid Derivatives and Chemical Etching, J. Phys. Chem. 99, 8368 - 8373 (1995).

136.      S.D. Evans, E. Urankar, A. Ulman, and N. Ferris, Self-assembled monolayers of alkanethiols containing a polar aromatic group: effects of the dipole position on molecular packing, orientation, and surface wetting properties, J. Am. Chem. Soc. 113, 4121-4131 (1991).

137.      G. Ashkenasy, D. Cahen, R. Cohen, A. Shanzer, and A. Vilan, Molecular engineering of semiconductor surfaces and devices, Accounts Chem. Res. 35, 121-128 (2002).

138.      J. Krüger, U. Bach, and M. Grätzel, Modification of TiO2 Heterojunctions with Benzoic Acid Derivatives in Hybrid Molecular Solid-State Devices, Adv. Mater. 12, 447-451 (2000).

139.      F. Nüesch, F. Rotzinger, L. Si-Ahmed, and L. Zuppiroli, Chemical potential shifts at organic device electrodes induced by grafted monolayers, Chem. Phys. Lett. 288, 861-867 (1998).

140.      D.M. Taylor and G.F. Bayes, Calculating the surface potential of unionized monolayers, Phys. Rev. E 49, 1439 - 1449 (1994).

141.      C. Ganzorig, K.-J. Kwak, K. Yagi, and M. Fujihira, Fine tuning work function of indium tin oxide by surface molecular design: Enhanced hole injection in organic electroluminescent devices, Appl. Phys. Lett. 79, 272-274 (2001).

142.      M.F. Iozzi and M. Cossi, Ab initio theoretical study of substituted dicarboxylic acids adsorbed on GaAs surfaces: Correlation between microscopic properties and observed electrical behavior, J. Phys. Chem. B 109, 15383-15390 (2005).

143.      S. Bastide, R. Butruille, D. Cahen, A. Dutta, J. Libman, A. Shanzer, L.M. Sun, and A. Vilan, Controlling the work function of GaAs by chemisorption of benzoic acid derivatives, J. Phys. Chem. B 101, 2678-2684 (1997).

144.      M. Carrara, F. Nüesch, and L. Zuppiroli, Carboxylic acid anchoring groups for the construction of self-assembled monolayers on organic device electrodes, Synth. Metals 121, 1633-1634 (2001).

145.      R. Cohen, L. Kronik, A. Shanzer, D. Cahen, A. Liu, Y. Rosenwaks, J.K. Lorenz, and A.B. Ellis, Molecular Control over Semiconductor Surface Electronic Properties: Dicarboxylic Acids on CdTe, CdSe, GaAs, and InP, J. Am. Chem. Soc. 121, 10545 -10553 (1999).

146.      A. Vilan, J. Ghabboun, and D. Cahen, Molecule-Metal Polarization at Rectifying GaAs Interfaces, J. Phys. Chem. B 107, 6360 -6376 (2003).

147.      H. Haick, J. Ghabboun, O. Niitsoo, H. Cohen, D. Cahen, A. Vilan, J. Hwang, A. Wan, F. Amy, and A. Kahn, Effect of molecular binding to a semiconductor on metal/molecule/ semiconductor junction behavior, J. Phys. Chem. B 109, 9622-9630 (2005).

148.      A. Salomon, D. Berkovich, and D. Cahen, Molecular modification of an ionic semiconductor-metal interface: ZnO/molecule/Au diodes, Appl Phys Lett 82, 1051-1053 (2003).

149.      H. Haick, J. Ghabboun, and D. Cahen, Pd versus Au as evaporated metal contacts to molecules, Appl. Phys. Lett. 86, (2005).

150.      H. Haick, M. Ambrico, T. Ligonzo, and D. Cahen, Discontinuous molecular films can control metal/semiconductor junctions, Adv. Mater. 16, 2145-2151 (2004).

151.      H. Haick, P.T. Hurley, A.I. Hochbaum, P. Yang, and N.S. Lewis, Electrical characteristics and chemical stability of non-oxidized, methyl-terminated silicon nanowires, J. Am. Chem. Soc. 128, 8990-8991 (2006).

152.      H. Haick, J.P. Pelz, T. Ligonzo, M. Ambrico, D. Cahen, W. Cai, C. Marginean, C. Tivarus, and R.T. Tung, Controlling Au/n-GaAs Junctions by Partial Molecular Monolayers, phys. stat. sol. (a) in press (2006).

153.      R.T. Tung, A.F.J. Levi, J.P. Sullivan, and F. Schrey, Schottky-barrier inhomogeneity at epitaxial NiSi/sub 2/ interfaces on Si(100), Phys. Rev. Lett. 66, 72-5 (1991).

154.      R.T. Tung, Electron transport at metal-semiconductor interfaces: General theory, Phys. Rev. B 45, 13509-23 (1992).

155.      A. Olbrich, J. Vancea, F. Kreupl, and H. Hoffmann, Potential pinch-off effect in inhomogeneous Au/Co/GaAs/sub 67/P/sub 33/(100)-Schottky contacts, Appl. Phys. Lett. 70, 2559-61 (1997).

156.      K.C. Pandey, New  pi -Bonded Chain Model for Si(111)-(2 x1) Surface, Phys. Rev. Lett. 47, 1913 - 1917 (1981).

157.      S.C. Erwin and H.H. Weitering, Theory of the "honeycomb chain-channel" reconstruction of M/Si(111)-(3 × 1), Phys Rev Lett 81, 2296-2299 (1998).

158.      D. Jeon, T. Hashizume, T. Sakurai, and R.F. Willis, Structural and electronic properties of ordered single and multiple layers of Na on the Si (111) surface, Phys Rev Lett 69, 1419-1422 (1992).

159.      C. Bromberger, J.N. Crain, K.N. Altmann, J.J. Paggel, F.J. Himpsel, and D. Fick, Electronic structure of the single-domain Si(111)-(3 × 1)-Li surface, Phys. Rev. B Condens. Matter Mater. Phys. 68, 753201-753207 (2003).

160.      M. Gurnett, J.B. Gustafsson, L.J. Holleboom, K.O. Magnusson, S.M. Widstrand, L.S.O. Johansson, M.K.-J. Johansson, and S.M. Gray, Core-level spectroscopy study of the Li Si (111) -3×1, Na Si (111) -3×1, and K Si (111) -3×1 surfaces, Phys. Rev. B 71, 1-9 (2005).

161.      A.A. Baski, S.C. Erwin, M.S. Turner, K.M. Jones, J.W. Dickinson, and J.A. Carlisle, Morphology and electronic structure of the Ca/Si(1 1 1) system, Surf Sci 476, 22-34 (2001).

162.      G. Lee, S. Hong, H. Kim, D. Shin, J.-Y. Koo, H.-I. Lee, and D.W. Moon, Structure of the Ba-induced Si(111)-(3 X 2) reconstruction, Phys Rev Lett 87, (2001).

163.      K. Sakamoto, W. Takeyama, H.M. Zhang, and R.I.G. Uhrberg, Structural investigation of Ca/Si(111) surfaces, Phys. Rev. B Condens. Matter Mater. Phys. 66, 1653191-1653198 (2002).

164.      P. Hutchison, M.M.R. Evans, and J. Nogami, Initial stages of Mg growth on the Si(001) surface studied by STM, Surf. Sci. 411, 99-110 (1998).

165.      J.S. Kim, K.-W. Ihm, C.-C. Hwang, H.S. Kim, Y.-K. Kim, C.-Y. Park, J.-H. Boo, and S.B. Lee, LEED studies of the adsorption of Mg and Ba on a single domain Si(001)2×1 surface, J. Korean Phys. Soc. 35, (1999).

166.      O. Kubo, A.A. Saranin, A.V. Zotov, T. Harada, T. Kobayashi, N. Yamaoka, J.-T. Ryu, M. Katayama, and K. Oura, Mg/Si(100) reconstructions studied by scanning tunneling microscopy, Jpn J Appl Phys Part 1 Regul Pap Short Note Rev Pap 39, 3740-3743 (2000).

167.      R. Shaltaf, E. Mete, and S. Ellialtiog?lu, Mg adsorption on Si(001) surface from first principles, Phys. Rev. B 69, 1254171-1254177 (2004).

168.      M.Y. Lai and Y.L. Wang, Gallium-induced nanostructures on Si(111): From magic clusters to incommensurate structures, Phys. Rev. B 60, 1764-1770 (1999).

169.      S. Gangopadhyay, T. Schmidt, and J. Falta, Influence of substrate domain boundaries on surface reconstructions of Ga/Si(1 1 1), Surf. Sci. 552, 63-69 (2004).

170.      Y. Horio, Structure analysis of Si(111)(rt3×rt3)-Al by energy-filtered RHEED, Surf. Rev. Lett. 4, 977-983 (1997).

171.      V.G. Kotlyar, A.A. Saranin, A.V. Zotov, T.V. Kasyanova, E.N. Chukurov, I.V. Pisarenko, and V.G. Lifshits, Atomic structure of the Al/Si(111) phases studied using STM and total-energy calculations, e-J. Surf. Sci. Nanotechnol. 3, 55-62 (2005).

172.      T. Hanada, H. Daimon, and S. Ino, Rocking-curve analysis of reflection high-energy electron diffraction from the Si(111)-( sqrt 3  x  sqrt 3 )R30°-Al, -Ga, and -In surfaces, Phys. Rev. B 51, 13320  - 13325 (1995).

173.      M.A. Olmstead, R.D. Bringans, R.I.G. Uhrberg, and R.Z. Bachrach, Arsenic overlayer on Si(111): Removal of surface reconstruction, Phys. Rev. B 34, 6041  - 6044 (1986).

174.      R.L. Headrick and W.R. Graham, Geometric structure of the Si(111): As-1  x  1 surface, Phys. Rev. B 37, 1051 - 1054 (1988).

175.      J.E. Bonnet, M.G. Martin, J. Avila, L. Roca, and M.C. Asensio, First stage of the formation of silver thin films on the As-passivated Si(111)-(1 x 1) surface, Surf. Rev. Lett. 7, 167-173 (2000).

176.      V. Pantin, J. Avila, M.E. Davila, J.E. Bonnet, and M.C. Asensio, Photoelectron diffraction study of Ag growth mediated by an arsenic layer on Si(1 1 1)1 × 1, J Electron Spectrosc Relat Phenom 137-140, 155-160 (2004).

177.      M. Tao, D. Udeshi, S. Agarwal, E. Maldonado, and W.P. Kirk, Negative Schottky barrier between titanium and n-type Si(0 0 1) for low-resistance ohmic contacts, Solid-St. Electron. 48, 335-338 (2004).

178.      A.C. Papageorgopoulos and M. Kamaratos, Adsorption and desorption of Se on Si(100)2×1: Surface restoration, Surf Sci 466, 173-182 (2000).

179.      A. Papageorgopoulos, A. Corner, M. Kamaratos, and C.A. Papageorgopoulos, Adsorption of elemental S on Si(100)2x1: Surface restoration, Phys. Rev. B 55, 4435 - 4441 (1997).

180.      P.A. Coon, P. Gupta, M.L. Wise, and S.M. George, Adsorption and desorption kinetics for SiH[sub 2]Cl[sub 2] on Si(111) 7 x 7, J. Vac. Sci. Technol. A 10, 324-333 (1992).

181.      Q. Gao, C.C. Cheng, P.J. Chen, W.J. Choyke, and J. Yates, J. T., Chlorine bonding sites and bonding configurations on Si(100)--(2 x 1), J. Chem. Phys. 98, 8308-8323 (1993).

182.      X.-Y. Zhu, V. Boiadjiev, J.A. Mulder, R.P. Hsung, and R.C. Major, Molecular assemblies on silicon surfaces via Si-O linkages, Langmuir 16, 6766-6772 (2000).

183.      A. Bansal, X. Li, S.I. Yi, W.H. Weinberg, and N.S. Lewis, Spectroscopic studies of the modification of crystalline si(111) surfaces with covalently-attached alkyl chains using a chlorination/alkylation method, J Phys Chem B 105, 10266-10277 (2001).

184.      Z. Li, T.I. Kamins, X. Li, and R.S. Williams, Chlorination of Si surfaces with gaseous hydrogen chloride at elevated temperatures, Surf Sci 554, (2004).

185.      S. Rivillon, F. Amy, Y.J. Chabal, and M.M. Frank, Gas phase chlorination of hydrogen-passivated silicon surfaces, Appl Phys Lett 85, 2583-2585 (2004).

186.      B.J. Eves and G.P. Lopinski, Formation and reactivity of high quality halogen terminated Si(1 1 1) surfaces, Surf Sci 579, (2005).

187.      J.M. Buriak, Organometallic Chemistry on Silicon and Germanium Surfaces, Chem. Rev. 102, 1271 -1308 (2002).

188.      L.J. Webb and N.S. Lewis, Comparison of the electrical properties and chemical stability of crystalline silicon(111) surfaces alkylated using Grignard reagents or Olefins with Lewis acid catalysts, J. Phys. Chem. B 107, 5404-5412 (2003).

189.      W. Swiech, E. Bauer, and M. Mundschau, Low-energy electron microscopy study of the system Si(111)-Au, Surf Sci 253, 283-296 (1991).

190.      R. Plass and L.D. Marks, Submonolayer Au on Si(111) phase diagram, Surf Sci 380, 497-506 (1997).

191.      R. Flammini, F. Wiame, R. Belkhou, A. Taleb-Ibrahimi, L. Gregoratti, A. Barinov, M. Marsi, and M. Kiskinova, Effects of annealing on the structure of the Au/Si(1 1 1)-H interface, Surf Sci 564, 121-130 (2004).

192.      A. Rota, A. Martinez-Gil, G. Agnus, E. Moyen, T. Maroutian, B. Bartenlian, R. Megy, M. Hanbucken, and P. Beauvillain, Au Island growth on a Si(1 1 1) vicinal surface, Surf Sci 600, 1207-1212 (2006).

193.      C. Grupp and A. Taleb-Ibrahimi, Au/H:Si(111)-(1×1) interface versus Au/Si(111)-(7×7), Phys. Rev. B 57, 6258-6261 (1998).

194.      R. Srinivasan and I.I. Suni, Electroless deposition of Au onto Si(111) studied by surface second harmonic generation, Surf Sci 408, (1998).

195.      C. Rossiter and I.I. Suni, Atomic force microscopy of Au deposition from aqueous HF onto Si(111), Surf Sci 430, (1999).

196.      B.L. Halpern and J.J. Schmitt, Multiple jets and moving substrates: Jet Vapor Deposition of multicomponent thin films, J. Vac. Sci. Technol. A 12, 1623-1627 (1994).

197.      D.D. Hass, J.F. Groves, and H.N.G. Wadley, Reactive vapor deposition of metal oxide coatings, Surf. Coat. Technol. 146-147, 85-93 (2001).

198.      R.T. Tung, Epitaxial CoSi2 and NiSi2 Thin-Films, Mater. Chem. Phys. 32, 107-133 (1992).

199.      J.M. Shannon, Control of Schottky barrier height using highly doped surface layers, Solid-St. Electron. 19, 537-43 (1976).

200.      S.J. Eglash, P. Shihong, M. Dang, W.E. Spicer, and D.M. Collins, Modified Schottky barrier heights by interfacial doped layers: MBE Al on GaAs, Jpn. J. Appl. Phys. Suppl. 431-5 (1982).

201.      J.P. Sullivan, R.T. Tung, D.J. Eaglesham, F. Schrey, and W.R. Graham, Giant variation in Schottky barrier height observed in the Co/Si system, J. Vac. Sci. Technol. B 11, 1564-70 (1993).

202.      R.T. Tung and F. Schrey, Topography of the Si(111) surface during silicon molecular beam epitaxy,, Phys. Rev. Lett. 63, 1277 (1989).

203.      R.T. Tung, F. Schrey, and D. J. Eaglesham, A transmission electron microscopy study of the topography of clean Si(111) surfaces,, J. Vac. Sci. Technol. B 8, 237 (1990).

204.      R.T. Tung, Oxide mediated epitaxy of CoSi2 on silicon, Appl. Phys. Lett. 68, 3461-3463 (1996).

205.      R.T. Tung, K. Fujii, K. Kikuta, S. Chikaki, and T. Kikkawa, Growth of TiSi2 from codeposited TiSix layers and interfacial layers, Appl. Phys. Lett. 70, 2386-2388 (1997).

206.      S. Ohmi and R.T. Tung, Effect of ultrathin Mo and MoSix layer on Ti silicide reaction, J. Appl. Phys. 86, 3655-3660 (1999).