Chapter 2 Statics of Particles

- The effects of forces on particles:
- replacing multiple forces acting on a particle with a single equivalent or resultant force,
- relations between forces acting on a particle that is in a state of equilibrium.
- NOTE: The focus on "particles" does not imply a restriction to miniscule bodies. Rather, the size and shape of the bodies is not significant so that all forces may be assumed to be applied at a single point. And, more importantly, we do not need to worry about rotation or torques (moments) of the system.

Resultant of Two Forces

- force: action of one body on another; characterized by its point of application, magnitude, line of action, and sense.
- The combined effect of two forces may be represented by a single resultant force.
- The resultant is equivalent to the diagonal of a parallelogram which contains the two forces in adjacent legs.
- Force is a vector quantity.

Addition of Vectors

Vectors and scalars

- Trapezoid rule for vector addition
- Triangle rule for vector addition
- Law of cosines,
$R^{2}=P^{2}+Q^{2}-2 P Q \cos B$
$\vec{R}=\vec{P}+\vec{Q}$
- Law of sines,
$\frac{\sin A}{Q}=\frac{\sin B}{R}=\frac{\sin C}{A}$
- Vector addition is commutative,

$$
\vec{P}+\vec{Q}=\vec{Q}+\vec{P}
$$

- Vector subtraction

Sample Problem 2.1

- Graphical solution - A parallelogram with sides equal to \mathbf{P} and \mathbf{Q} is drawn to scale. The magnitude and direction of the resultant or of the diagonal to the parallelogram are measured,

$$
\mathbf{R}=98 \mathrm{~N} \quad \alpha=35^{\circ}
$$

- Graphical solution - A triangle is drawn with \mathbf{P} and \mathbf{Q} head-to-tail and to scale. The magnitude and direction of the resultant or of the third side of the triangle are measured,

$$
\mathbf{R}=98 \mathrm{~N} \quad \alpha=35^{\circ}
$$

The two forces act on a bolt at

A. Determine their resultant.

Sample Problem 2.1

- Trigonometric solution - Apply the triangle rule.

From the Law of Cosines,

$$
\begin{aligned}
R^{2} & =P^{2}+Q^{2}-2 P Q \cos B \\
& =(40 \mathrm{~N})^{2}+(60 \mathrm{~N})^{2}-2(40 \mathrm{~N})(60 \mathrm{~N}) \cos 155^{\circ} \\
R & =97.73 \mathrm{~N}
\end{aligned}
$$

From the Law of Sines,

$$
\begin{aligned}
\frac{\sin A}{Q} & =\frac{\sin B}{R} \\
\sin A & =\sin B \frac{Q}{R} \\
& =\sin 155^{\circ} \frac{60 \mathrm{~N}}{97.73 \mathrm{~N}} \\
A & =15.04^{\circ} \\
\alpha & =20^{\circ}+A \\
\alpha & =35.04^{\circ}
\end{aligned}
$$

Sample Problem 2.2

A barge is pulled by two tugboats. If the resultant of the forces exerted by the tugboats is $5000 \mathbf{l b f}$ directed along the axis of the barge, determine the tension in each of the ropes for $\alpha=45^{\circ}$.

- Trigonometric solution - Triangle Rule with Law of Sines

$\frac{T_{1}}{\sin 45^{\circ}}=\frac{T_{2}}{\sin 30^{\circ}}=\frac{5000 \mathrm{lbf}}{\sin 105^{\circ}}$
$T_{1}=3660 \mathrm{lbf} \quad T_{2}=2590 \mathrm{lbf}$

What if...?

At what value of α would the tension in rope 2 be a minimum?

- The minimum tension in rope 2 occurs when \mathbf{T}_{1} and \mathbf{T}_{2} are perpendicular.

$$
\begin{array}{ll}
T_{2}=(5000 \mathrm{lbf}) \sin 30^{\circ} & T_{2}=2500 \mathrm{lbf} \\
T_{1}=(5000 \mathrm{lbf}) \cos 30^{\circ} & T_{1}=4330 \mathrm{lbf} \\
\alpha=90^{\circ}-30^{\circ} & \alpha=60^{\circ}
\end{array}
$$

Rectangular Components of a Force: Unit Vectors

- It's possible to resolve a force vector into perpendicular components so that the resulting parallelogram is a rectangle. \vec{F}_{x} and \vec{F}_{y} are referred to as rectangular vector components and

$$
\vec{F}=\vec{F}_{x}+\vec{F}_{y}
$$

- Define perpendicular unit vectors \vec{i} and \vec{j} which are parallel to the x and y axes.
- Vector components may be expressed as products of the unit vectors with the scalar magnitudes of the vector components.

$$
\vec{F}=F_{x} \vec{i}+F_{y} \vec{j}
$$

F_{x} and F_{y} are referred to as the scalar components of \vec{F}

Addition of Forces by Summing Components

Sample Problem 2.3

Four forces act on bolt A as shown. Determine the resultant of the force on the bolt.

- The scalar components of the resultant vector are
equal to the sum of the corresponding scalar components of the given forces.

$$
\begin{aligned}
R_{x} & =P_{x}+Q_{x}+S_{x} & R_{y} & =P_{y}+Q_{y}+S_{y} \\
& =\sum F_{x} & & =\sum F_{y}
\end{aligned}
$$

- To find the resultant magnitude and direction,

$$
R=\sqrt{R_{x}^{2}+R_{y}^{2}} \quad \theta=\tan ^{-1} \frac{R_{y}}{R_{x}}
$$

SOLUTION:

- To find the resultant of 3 (or more) concurrent forces,

$$
\vec{R}=\vec{P}+\vec{Q}+\vec{S}
$$

- Resolve each force into rectangular components, then add the components in each direction:

$$
\begin{aligned}
R_{x} \vec{i}+R_{y} \vec{j} & =P_{x} \vec{i}+P_{y} \vec{j}+Q_{x} \vec{i}+Q_{y} \vec{j}+S_{x} \vec{i}+S_{y} \vec{j} \\
& =\left(P_{x}+Q_{x}+S_{x}\right) \vec{i}+\left(P_{y}+Q_{y}+S_{y}\right) \vec{j}
\end{aligned}
$$

- Resolve each force into rectangular components.

force	mag	x-comp	$y-$ comp
\vec{F}_{1}	150	+129.9	+75.0
\vec{F}_{2}	80	-27.4	+75.2
\vec{F}_{3}	110	0	-110.0
\vec{F}_{4}	100	+96.6	-25.9
	$R_{x}=+199.1$	$R_{y}=+14.3$	

- Determine the components of the resultant by adding the corresponding force components.
- Calculate the magnitude and direction.

$$
\begin{array}{ll}
R=\sqrt{199.1^{2}+14.3^{2}} & R=199.6 \mathrm{~N} \\
\tan \alpha=\frac{14.3 \mathrm{~N}}{199.1 \mathrm{~N}} & \alpha=4.1^{\circ}
\end{array}
$$

Equilibrium of a Particle

- When the resultant of all forces acting on a particle is zero, the particle is in equilibrium.
- Newton's First Law: If the resultant force on a particle is zero, the particle will remain at rest or will continue at constant speed in a straight line.

- Particle acted upon by two forces:
- equal magnitude
- same line of action
- opposite sense

- Particle acted upon by three or more forces:
- graphical solution yields a closed polygon
- algebraic solution

$$
\begin{aligned}
& \vec{R}=\sum \vec{F}=0 \\
& \sum F_{x}=0 \quad \sum F_{y}=0
\end{aligned}
$$

Free-Body Diagrams

Space Diagram: A sketch showing the physical conditions of the problem, usually provided with the problem statement, or represented by the actual physical situation.

Free Body Diagram: A sketch showing only the forces on the selected particle. This must be created by you.

Sample Problem 2.4

In a ship-unloading operation, a 3500-lb automobile is supported by a cable. A rope is tied to the cable and pulled to center the automobile over its intended position. What is the tension in the rope?

- Construct a free body diagram for the particle at A, and the associated polygon.
- Apply the conditions for equilibrium and solve for the unknown force magnitudes.

Law of Sines:

$$
\begin{aligned}
& \frac{T_{A B}}{\sin 120^{\circ}}=\frac{T_{A C}}{\sin 2^{\circ}}=\frac{3500 \mathrm{lb}}{\sin 58^{\circ}} \\
& T_{A B}=3570 \mathrm{lb} \\
& T_{A C}=144 \mathrm{lb}
\end{aligned}
$$

Sample Problem 2.6

It is desired to determine the drag force at a given speed on a prototype sailboat hull. A model is placed in a test channel and three cables are used to align its bow on the channel centerline. For a given speed, the tension is 40 lb in cable $A B$ and 60 lb in cable $A E$.

Determine the drag force exerted on the hull and the tension in cable $A C$.

Expressing a Vector in 3-D Space

If angles with some of the axes are given:

- The vector \vec{F} is contained in the plane $O B A C$.
- Resolve \vec{F} into horizontal and vertical components.

$$
\begin{aligned}
& F_{y}=F \cos \theta_{y} \\
& F_{h}=F \sin \theta_{y}
\end{aligned}
$$

- Resolve F_{h} into rectangular components

$$
\begin{aligned}
F_{x} & =F_{h} \cos \phi \\
& =F \sin \theta_{y} \cos \phi \\
F_{y} & =F_{h} \sin \phi \\
& =F \sin \theta_{y} \sin \phi
\end{aligned}
$$

Expressing a Vector in 3-D Space

If the direction cosines are given:

- With the angles between \vec{F} and the axes,

$$
\begin{aligned}
F_{x} & =F \cos \theta_{x} \quad F_{y}=F \cos \theta_{y} \quad F_{z}=F \cos \theta_{z} \\
\vec{F} & =F_{x} \vec{i}+F_{y} \vec{j}+F_{z} \vec{k} \\
& =F\left(\cos \theta_{x} \vec{i}+\cos \theta_{y} \vec{j}+\cos \theta_{z} \vec{k}\right) \\
& =F \vec{\lambda}
\end{aligned}
$$

$$
\vec{\lambda}=\cos \theta_{x} \vec{i}+\cos \theta_{y} \vec{j}+\cos \theta_{z} \vec{k}
$$

- $\vec{\lambda}$ is a unit vector along the line of action of \vec{F} and $\cos \theta_{x}, \cos \theta_{y}$, and $\cos \theta_{z}$ are the direction cosines for \vec{F}

Expressing a Vector in 3-D Space

If two points on the line of action are given:

Direction of the force is defined by the location of two points,

$$
M\left(x_{1}, y_{1}, z_{1}\right) \text { and } N\left(x_{2}, y_{2}, z_{2}\right)
$$

$$
\begin{aligned}
& \text { e given: } \\
& \begin{aligned}
\vec{d} & =\text { vector joining } M \text { and } N \\
& =d_{x} \vec{i}+d_{y} \vec{j}+d_{z} \vec{k} \\
d_{x} & =x_{2}-x_{1} \quad d_{y}=y_{2}-y_{1} \quad d_{z}=z_{2}-z_{1} \\
\vec{F} & =F \vec{\lambda} \\
\vec{\lambda} & =\frac{1}{d}\left(d_{x} \vec{i}+d_{y} \vec{j}+d_{z} \vec{k}\right) \\
F_{x} & =\frac{F d_{x}}{d} \quad F_{y}=\frac{F d_{y}}{d} \quad F_{z}=\frac{F d_{z}}{d}
\end{aligned}, \begin{array}{l}
\left.d_{y}=y_{2}=y_{1}, z_{1}\right) \\
\left.d_{x}=x_{2}-x_{2}, y_{2}, z_{2}\right) \\
d_{z}=z_{2}-z_{1}<0
\end{array}
\end{aligned}
$$

Sample Problem 2.7

$$
\begin{aligned}
\overrightarrow{A B} & =(-40 \mathrm{~m}) \vec{i}+(80 \mathrm{~m}) \vec{j}+(30 \mathrm{~m}) \vec{k} \\
A B & =\sqrt{(-40 \mathrm{~m})^{2}+(80 \mathrm{~m})^{2}+(30 \mathrm{~m})^{2}} \\
& =94.3 \mathrm{~m}
\end{aligned}
$$

$$
\vec{\lambda}=\left(\frac{-40}{94.3}\right) \vec{i}+\left(\frac{80}{94.3}\right) \vec{j}+\left(\frac{30}{94.3}\right) \vec{k}
$$

The tension in the guy wire is 2500

$$
=-0.424 \vec{i}+0.848 \vec{j}+0.318 \vec{k}
$$

$\vec{F}=F \vec{\lambda}$

$$
=(2500 \mathrm{~N})(-0.424 \vec{i}+0.848 \vec{j}+0.318 \vec{k})
$$

$$
=(-1060 \mathrm{~N}) \vec{i}+(2120 \mathrm{~N}) \vec{j}+(795 \mathrm{~N}) \vec{k}
$$

b) the angles $\theta_{x}, \theta_{y}, \theta_{z}$ defining the direction of the force (the direction cosines)

Sample Problem 2.7

- Noting that the components of the unit vector are the direction cosines for the vector, calculate the corresponding angles.

$$
\begin{aligned}
\vec{\lambda} & =\cos \theta_{x} \vec{i}+\cos \theta_{y} \vec{j}+\cos \theta_{z} \vec{k} \\
& =-0.424 \vec{i}+0.848 \vec{j}+0.318 \vec{k}
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{x}=115.1^{\circ} \\
& \theta_{y}=32.0^{\circ} \\
& \theta_{z}=71.5^{\circ}
\end{aligned}
$$

What if...?

What are the components of the force in the wire at point B ? Can you find it without doing any calculations?

SOLUTION:

- Since the force in the guy wire must be the same throughout its length, the force at B (and acting toward A) must be the same magnitude but opposite in direction to the force at A.

$$
\vec{F}_{B A}=-\vec{F}_{A B}
$$

$$
=(1060 \mathrm{~N}) \vec{i}+(-2120 \mathrm{~N}) \vec{j}+(-795 \mathrm{~N}) \vec{k}
$$

