Chap. 3 Rigid Bodies: Equivalent Systems of Forces

- Treatment of a body as a single particle is not always possible. In general, the size of the body and the specific points of application of the forces must be considered.
- To fully describe the effect of forces exerted on a rigid body, also need to consider:
 - moment of a force about a point
 - moment of a force about an axis
 - moment due to a couple
- Any system of forces acting on a rigid body can be replaced by an equivalent system consisting of one force acting at a given point and one couple.

© 2013 The McGraw-Hill Companies, Inc. All rights reserved.

3 - 1

External/Internal Forces; Equivalent Forces

- External forces are shown in a free body diagram. Internal forces should not appear on a free body diagram.
- Principle of Transmissibility -Conditions of equilibrium or motion are not affected by *transmitting* a force along its line of action.
 NOTE: F and F' are equivalent forces.
- Moving the point of application of the force **F** to the rear bumper does not affect the motion or the other forces acting on the truck.

© 2013 The McGraw-Hill Companies, Inc. All rights reserved.

Vector Product of Two Vectors

- Vector product of two vectors **P** and **Q** (a concept needed for moment) is defined as the vector **V** which satisfies the following conditions:
 - 1. Line of action of *V* is perpendicular to plane containing *P* and *Q*.
 - 2. Magnitude of V is $V = PQ \sin \theta$
 - 3. Direction of *V* is obtained from the right-hand rule.
- Vector products:
 - are not commutative, $Q \times P = -(P \times Q)$
 - are distributive, $P \times (Q_1 + Q_2) = P \times Q_1 + P \times Q_2$
 - are not associative, $(P \times Q) \times S \neq P \times (Q \times S)$

© 2013 The McGraw-Hill Companies, Inc. All rights reserved.

Vector Products: Rectangular Components • Vector products of Cartesian unit vectors, $\vec{i} \times \vec{i} = 0$ $\vec{j} \times \vec{i} = -\vec{k}$ $\vec{k} \times \vec{i} = \vec{j}$ $\vec{i} \times \vec{j} = \vec{k}$ $\vec{j} \times \vec{j} = 0$ $\vec{k} \times \vec{j} = -\vec{i}$ $\vec{i} \times \vec{k} = -\vec{j}$ $\vec{j} \times \vec{k} = \vec{i}$ $\vec{k} \times \vec{k} = 0$ • Vector products in terms of rectangular coordinates $\vec{v} = (P_x \vec{i} + P_y \vec{j} + P_z \vec{k}) \times (Q_x \vec{i} + Q_y \vec{j} + Q_z \vec{k})$ $= (P_y Q_z - P_z Q_y) \vec{i} + (P_z Q_x - P_x Q_z) \vec{j}$ $+ (P_x Q_y - P_y Q_x) \vec{k}$ $= \begin{pmatrix} \vec{i} & \vec{j} & \vec{k} \\ P_x & P_y & P_z \\ Q_x & Q_y & Q_z \end{pmatrix}$

© 2013 The McGraw-Hill Companies, Inc. All rights reserved.

3 - 4

 $V = \mathbf{P} \times \mathbf{Q}$

(a)

(b)

Moment of a Force About a Point

- A force vector is defined by its magnitude and direction. Its effect on the rigid body also depends on its point of application.
- The *moment* of **F** about O is defined as

$$M_{O} = r \times F$$

- The moment vector M_o is perpendicular to the plane containing O and the force F.
- Magnitude of M_{O} , $M_{O} = rF \sin \theta = Fd$, measures the tendency of the force to cause rotation of the body about an axis along M_{O} . The sense of the moment may be determined by the right-hand rule.
- Any force *F*' that has the same magnitude and direction as *F*, is *equivalent* if it also has the same line of action and therefore, produces the same moment.

© 2013 The McGraw-Hill Companies, Inc. All rights reserved.

3 - 5

Moment of a Force About a Point

- *Two-dimensional structures* have length and breadth but negligible depth and are subjected to forces contained only in the plane of the structure.
- The plane of the structure contains the point O and the force F. M_O , the moment of the force about O is perpendicular to the plane.
- If the force tends to rotate the structure clockwise, the sense of the moment vector is out of the plane of the structure and the magnitude of the moment is positive.
- If the force tends to rotate the structure counterclockwise, the sense of the moment vector is into the plane of the structure and the magnitude of the moment is negative.

 $(a) M_O = + Fd$

 $(b) M_O = -Fd$

Varignon's Theorem

• The moment about a give point O of the resultant of several concurrent forces is equal to the sum of the moments of the various moments about the same point O.

$$\vec{r} \times \left(\vec{F}_1 + \vec{F}_2 + \cdots\right) = \vec{r} \times \vec{F}_1 + \vec{r} \times \vec{F}_2 + \cdots$$

• Varignon's Theorem makes it possible to replace the direct determination of the moment of a force F by the moments of two or more component forces of *F*.

y

3 - 7

Rectangular Components of the Moment of a Force

The moment of
$$F$$
 about O ,
 $\vec{M}_{O} = \vec{r} \times \vec{F}$, $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$
 $\vec{F} = F_{x}\vec{i} + F_{y}\vec{j} + F_{z}\vec{k}$
 $\vec{M}_{O} = M_{x}\vec{i} + M_{y}\vec{j} + M_{z}\vec{k} = \begin{pmatrix} \vec{i} & \vec{j} & \vec{k} \\ x & y & z \\ F_{x} & F_{y} & F_{z} \end{pmatrix}$
 $= \left(yF_{z} - zF_{y}\right)\vec{i} + \left(zF_{x} - xF_{z}\right)\vec{j} + \left(xF_{y} - yF_{x}\right)\vec{k}$

The components of \vec{M}_o , M_x , M_y , and M_z , represent the moments about the x-, y- and z-axis, respectively.

3 - 8

x

Rectangular Components of the Moment of a Force The moment of F about B,

$$\vec{M}_{B} = \vec{r}_{A/B} \times \vec{F}$$

$$\vec{r}_{A/B} = \vec{r}_{A} - \vec{r}_{B}$$

$$= (x_{A} - x_{B})\vec{i} + (y_{A} - y_{B})\vec{j} + (z_{A} - z_{B})\vec{k}$$

$$\vec{F} = F_{x}\vec{i} + F_{y}\vec{j} + F_{z}\vec{k}$$

$$\vec{M}_{B} = \begin{pmatrix} \vec{i} & \vec{j} & \vec{k} \\ (x_{A} - x_{B}) & (y_{A} - y_{B}) & (z_{A} - z_{B}) \\ F_{x} & F_{y} & F_{z} \end{pmatrix}$$

© 2013 The McGraw-Hill Companies, Inc. All rights reserved.

3 - 9

 $(x_B)i$

x

 $(z_A - z_B)\mathbf{k}$

Rectangular Components of the Moment of a Force For two-dimensional structures, $\vec{M}_{O} = \left(xF_{y} - yF_{z}\right)\vec{k}$ A(x, y, 0)уj $M_o = M_Z$ $= xF_y - yF_z$ x xi $M_O = M_z k$ $\vec{M}_{B} = \left[\left(x_{A} - x_{B} \right) F_{y} - \left(y_{A} - y_{B} \right) F_{z} \right] \vec{k}$ $(y_A - y_B)\mathbf{j}$ $M_B = M_Z$ $= (x_A - x_B)F_y - (y_A - y_B)F_z$ (xA $= M_R \mathbf{k}$

© 2013 The McGraw-Hill Companies, Inc. All rights reserved.

Sample Problem 3.1

A 100-lb vertical force is applied to the end of a lever which is attached to a shaft (not shown) at *O*.

Determine:

- a) the moment about O,
- b) the horizontal force at *A* which creates the same moment,
- c) the smallest force at A which produces the same moment,
- d) the location for a 240-lb vertical force to produce the same moment,
- e) whether any of the forces from b, c, and d is equivalent to the original force.

© 2013 The McGraw-Hill Companies, Inc. All rights reserved.

Scalar Product of Two Vectors

- The scalar product or dot product between two vectors \boldsymbol{P} and \boldsymbol{Q} is defined as $\vec{P} \bullet \vec{Q} = PQ\cos\theta$ (scalar result)
- Scalar products:
 - are commutative, $\vec{P} \bullet \vec{Q} = \vec{Q} \bullet \vec{P}$
 - are distributive, $\vec{P} \bullet (\vec{Q}_1 + \vec{Q}_2) = \vec{P} \bullet \vec{Q}_1 + \vec{P} \bullet \vec{Q}_2$ are not associative, $(\vec{P} \bullet \vec{Q}) \bullet \vec{S} =$ undefined
- Scalar products with Cartesian unit components,

$$\vec{P} \cdot \vec{Q} = \left(P_x \vec{i} + P_y \vec{j} + P_z \vec{k}\right) \cdot \left(Q_x \vec{i} + Q_y \vec{j} + Q_z \vec{k}\right)$$
$$\vec{i} \cdot \vec{i} = 1 \quad \vec{j} \cdot \vec{j} = 1 \quad \vec{k} \cdot \vec{k} = 1 \quad \vec{i} \cdot \vec{j} = 0 \quad \vec{j} \cdot \vec{k} = 0 \quad \vec{k} \cdot \vec{i} = 0$$

→

$$\vec{P} \bullet \vec{Q} = P_x Q_x + P_y Q_y + P_z Q_z$$
$$\vec{P} \bullet \vec{P} = P_x^2 + P_y^2 + P_z^2 = P^2$$

3 - 13

Mixed Triple Product of Three Vectors

- Mixed triple product of three vectors, $\vec{S} \bullet (\vec{P} \times \vec{Q}) = \text{scalar result}$
- The six mixed triple products formed from *S*, *P*, and Q have equal magnitudes but not the same sign,

$$\vec{S} \bullet \left(\vec{P} \times \vec{Q} \right) = \vec{P} \bullet \left(\vec{Q} \times \vec{S} \right) = \vec{Q} \bullet \left(\vec{S} \times \vec{P} \right)$$
$$= -\vec{S} \bullet \left(\vec{Q} \times P \right) = -\vec{P} \bullet \left(\vec{S} \times \vec{Q} \right) = -\vec{Q} \bullet \left(\vec{P} \times \vec{S} \right)$$

$$\vec{S} \bullet (\vec{P} \times \vec{Q}) = S_x \left(P_y Q_z - P_z Q_y \right) + S_y \left(P_z Q_x - P_x Q_z \right) + S_z \left(P_x Q_y - P_y Q_x \right) = \begin{pmatrix} S_x & S_y & S_z \\ P_x & P_y & P_z \\ Q_x & Q_y & Q_z \end{pmatrix}$$

Moment of a Force About a Given Axis

• Moment *M*₀ of a force *F* applied at the point *A* about a point *O*,

 $\vec{M}_o = \vec{r} \times \vec{F}$

• Scalar moment M_{OL} about an axis OL is the projection of the moment vector M_O onto the axis,

$$M_{OL} = \vec{\lambda} \bullet \vec{M}_{O} = \vec{\lambda} \bullet \left(\vec{r} \times \vec{F} \right)$$

• Moments of *F* about the coordinate axes,

$$M_{x} = yF_{z} - zF_{y}$$
$$M_{y} = zF_{x} - xF_{z}$$
$$M_{z} = xF_{y} - yF_{x}$$

© 2013 The McGraw-Hill Companies, Inc. All rights reserved.

Moment of a Couple

- Two forces *F* and -*F* having the same magnitude, parallel lines of action, and opposite sense are said to form a *couple*.
- Moment of the couple,

$$\vec{M} = \vec{r}_A \times \vec{F} + \vec{r}_B \times \left(-\vec{F}\right)$$
$$= \left(\vec{r}_A - \vec{r}_B\right) \times \vec{F}$$
$$= \vec{r} \times \vec{F}$$
$$M = rF \sin \theta = Fd$$

• The moment vector of the couple is independent of the choice of the origin of the coordinate axes, i.e., it is a *free vector* that can be applied at any point with the same effect.

© 2013 The McGraw-Hill Companies, Inc. All rights reserved.

- A couple can be represented by a vector with magnitude and direction equal to the moment of the couple.
- Couple vectors obey the law of addition of vectors.
- Couple vectors are free vectors, i.e., there is no point of application it simply acts on the body.
- Couple vectors may be resolved into component vectors.

Resolution of a Force Into a Force at O and a Couple

• Force vector *F* can not be simply moved to *O* without modifying its action on the body. Attaching equal and opposite force vectors at *O* produces no net effect on the body. The three forces may be replaced by an equivalent force vector and couple vector, i.e, a *force-couple system*.

© 2013 The McGraw-Hill Companies, Inc. All rights reserved.

3 - 19

© 2013 The McGraw-Hill Companies, Inc. All rights reserved.

- A system of forces may be replaced by a collection of force-couple systems acting at a given point *O*
- The force and couple vectors may be combined into a resultant force vector and a resultant couple vector,

$$\vec{R} = \sum \vec{F} \vec{M}_o^R = \sum \left(\vec{r} \times \vec{F} \right)$$

- The force-couple system at *O* may be moved to *O*' with the addition of the moment of **R** about *O*', $\vec{M}_{On}^{R} = \vec{M}_{O}^{R} + \vec{s} \times \vec{R}$
- Two systems of forces are equivalent if they can be reduced to the same force-couple system.

2013 The McGraw-Hill Companies, Inc. All rights reserved.

Further Reduction of a System of Forces

- If the resultant force and couple at *O* are mutually perpendicular, they can be replaced by a single force acting along a new line of action.
- The resultant force-couple system for a system of forces will be mutually perpendicular if:
 - 1) the forces are concurrent,
 - 2) the forces are coplanar, or
 - 3) the forces are parallel.

3 - 23

© 2013 The McGraw-Hill Companies, Inc. All rights reserved.

Further Reduction of a System of ForcesImage: System of coplanar forces is reduced to a force-couple system \vec{R} and \vec{M}_{O}^{R} that is mutually perpendicular.Image: System can be reduced to a single force by moving the line of action of \vec{R} until its moment about O becomes \vec{M}_{O}^{R} Image: System can be reduced to a single force by moving the line of action of \vec{R} until its moment about O becomes \vec{M}_{O}^{R} Image: System can be reduced to a single force by moving the line of action of \vec{R} until its moment about O becomes \vec{M}_{O}^{R} Image: System can be reduced to a single force by moving the line of action of \vec{R} until its moment about O becomes \vec{M}_{O}^{R} Image: System can be reduced to a single force by moving the line of action of \vec{R} until its moment about O becomes \vec{M}_{O}^{R} Image: System can be reduced to a single force by moving the line of action of \vec{R} until its moment about O becomes \vec{M}_{O}^{R} Image: System can be reduced to a single force by \vec{M}_{O}^{R} Image: System can be reduced to a single force by \vec{M}_{O}^{R} Image: System can be reduced to a single force by \vec{M}_{O}^{R} Image: System can be reduced to a single force by \vec{M}_{O}^{R} Image: System can be reduced to a single force by \vec{M}_{O}^{R} Image: System can be reduced to a single force by \vec{M}_{O}^{R} Image: System can be reduced to a single force by \vec{M}_{O}^{R} Image: System can be reduced to a single force by \vec{M}_{O}^{R} Image: System can be reduced to a single force by \vec{M}_{O}^{R} Image: System can be reduced to a single force by \vec{M}_{O}^{R} Image: System can be reduced to a single force by \vec{M}_{O}^{R}

© 2013 The McGraw-Hill Companies, Inc. All rights reserved.

forces shown to (a) an equivalent force-couple system at A, (b) an equivalent force couple system at B, and (c) a single force or resultant.

Note: Since the support reactions are not included, the given system will not maintain the beam in equilibrium.

© 2013 The McGraw-Hill Companies, Inc. All rights reserved.

Three cables are attached to the bracket as shown. Replace the forces with an equivalent force-couple system at *A*.

Solution by brute force:

$$\vec{r}_{B/A} = 0.075\,\vec{i} + 0.050k \text{ (m)}$$

$$\vec{r}_{C/A} = 0.075\,\vec{i} - 0.050k \text{ (m)}$$

$$\vec{r}_{D/A} = 0.100\,\vec{i} - 0.100\,\vec{j} \text{ (m)}$$

$$\vec{F}_B = 300\,\vec{i} - 600\,\vec{j} + 200k \text{ (N)}$$

$$\vec{F}_C = 707\,\vec{i} - 707\,\vec{j} \text{ (N)}$$

$$\vec{F}_D = 600\,\vec{i} + 1039\,\vec{j} \text{ (N)}$$

Sample Problem 3.10	
• Compute the equivalent force,	• Compute the equivalent couple,
$\vec{R} = \sum \vec{F}$	$ar{M}_{A}^{R}=\sum\left(ec{r} imesec{F} ight)$
$=(300+707+600)\vec{i}$	$ \vec{i} \vec{j} \vec{k} $
$+(-600+1039)\vec{j}$	$\vec{r}_{B/A} \times \vec{F}_{B} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0.075 & 0 & 0.050 \\ 300 & -600 & 200 \end{vmatrix} = 30\vec{i} - 45\vec{k}$
$+(200-707)\vec{k}$	300 -600 200
$\vec{R} = 1607\vec{i} + 439\vec{j} - 507\vec{k}$ (N)	$ \vec{i} \vec{j} \vec{k}$
(17.68 N·m) j	$\vec{r}_{C/A} \times \vec{F}_c = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0.075 & 0 & -0.050 \\ 707 & 0 & -707 \end{vmatrix} = 17.68\vec{j}$
(30 N·m) i	$\vec{r}_{D/A} \times \vec{F}_D = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0.100 & -0.100 & 0 \\ 600 & 1039 & 0 \end{vmatrix} = 163.9\vec{k}$
	600 1039 0
	$\vec{M}_{A}^{R} = 30\vec{i} + 17.68\vec{j} + 118.9\vec{k}$
	2 27

© 2013 The McGraw-Hill Companies, Inc. All rights reserved.