Chap. 4 Equilibrium of Rigid Bodies

- For a rigid body, the condition of static equilibrium means that the body under study does not translate or rotate under the given loads that act on the body
- The necessary and sufficient conditions for the static equilibrium of a body are that the forces sum to zero, and the moment about any point sum to zero:

$$
\sum \vec{F}=0 \quad \sum \vec{M}_{O}=\sum(\vec{r} \times \vec{F})=0
$$

- Equilibrium analysis can be applied to two-dimensional or threedimensional bodies, but the first step in any analysis is the creation of the free body diagram

Free-Body Diagram

The first step in the static equilibrium analysis of a rigid body is identification of all forces acting on the body with a free body diagram.

- Select the body to be analyzed and detach it from the ground and all other bodies and/or supports.
- Indicate point of application, magnitude, and direction of external forces, including the rigid body weight.
- Indicate point of application and assumed direction of unknown forces from reactions of the ground and/or other bodies, such as the supports.
- Include the dimensions, which will be needed to compute the moments of the forces.

Reactions at Supports and Connections for a Two-Dimensional Structure

- Reactions equivalent to a force with known line of action.

Reactions at Supports and Connections for a Two-Dimensional Structure

- Reactions equivalent to a force of unknown direction and magnitude.
- Reactions equivalent to a force of unknown direction and magnitude and a couple.of unknown magnitude

Practice

The frame shown supports part of the roof of a small building. Your goal is to draw the free body diagram (FBD) for the frame. (Neglect the weight of objects.)

Equilibrium of a Rigid Body in Two Dimensions

(a)

(b)

- For known forces and moments that act on a two-dimensional structure, the following are true:
$F_{z}=0 \quad M_{x}=M_{y}=0 \quad M_{z}=M_{O}$
- Equations of equilibrium become
$\sum F_{x}=0 \quad \sum F_{y}=0 \quad \sum M_{A}=0$
where A can be any point in the plane of the body.
- The 3 equations can be solved for no more than 3 unknowns.
- The 3 equations cannot be augmented with additional equations, but they can be replaced $\sum F_{X}=0 \quad \sum M_{A}=0 \quad \sum M_{B}=0$

Statically Indeterminate Reactions

(a)

(b)

- More unknowns than equations

(a)

(b)
- Fewer unknowns than equations, partially constrained

(a)

(b)
- Equal number unknowns and equations but improperly constrained

Sample Problem 4.1

- Determine $B \quad \Sigma M_{A}=0: \quad+B(1.5 \mathrm{~m})-9.81 \mathrm{kN}(2 \mathrm{~m})$

A fixed crane has a mass of 1000 kg and is used to lift a 2400 kg crate. It is held in place by a pin at A and a rocker at B. The center of gravity of the crane is located at G.

Determine the components of the reactions at A and B.

$$
B=+107.1 \mathrm{kN}
$$

- Determine the reactions at A

$$
\sum F_{X}=0: \quad A_{x}+B=0 \quad A_{x}=-107.1 \mathrm{kN}
$$

$$
\begin{aligned}
& \sum F_{y}=0: \quad A_{y}-9.81 \mathrm{kN}-23.5 \mathrm{kN}=0 \\
& A_{y}=+33.3 \mathrm{kN}
\end{aligned}
$$

Sample Problem 4.4

The frame supports part of the roof of a small building. The tension in the cable is 150 kN .

Determine the reaction at the fixed end E.

$$
\sum F_{X}=0: \quad E_{X}+\frac{4.5}{7.5}(150 \mathrm{kN})=0
$$

Practice

A $2100-\mathrm{lb}$ tractor is used to lift 900 lb of gravel.
Determine the reaction at each of the two rear wheels and two front wheels

$$
\sum M_{B}=0 .
$$

$-\mathrm{F}_{\mathrm{A}}(60 \mathrm{in})+.2100 \mathrm{lb}(40 \mathrm{in})-.900 \mathrm{lb}(50 \mathrm{in})=$.
$\mathrm{F}_{\mathrm{A}}=650 \mathrm{lb}$, so the reaction at
each wheel is 325 lb

$$
\begin{aligned}
\Sigma \mathrm{F}_{\mathrm{y}}=0 & \Rightarrow \mathrm{~F}_{\mathrm{B}}=2350 \mathrm{lb}, \\
& \text { or } 1175 \mathrm{lb} \text { at each front wheel }
\end{aligned}
$$

What if...?

- Now suppose we have a different problem: How much gravel can this tractor carry before it tips over?

Equilibrium of a Two- or Three-Force Body

Sample Problem 4.6

A man raises a $10-\mathrm{kg}$ joist, of length 4 m , by pulling on a rope. Find the tension T in the rope and the reaction at A.

A 500-lb cylindrical tank, 8 ft in diameter, is to be raised over a 2 ft obstruction. A cable is wrapped around the tank and pulled horizontally as shown. Knowing that the corner of the obstruction at A is rough, find the required tension in the cable and the reaction at A.

Force triangle

$\cos \alpha=\frac{G D}{A G}=\frac{2 \mathrm{ft}}{4 \mathrm{ft}}=0.5 \quad \alpha=60^{\circ}$
$\theta=\frac{1}{2} \alpha=30^{\circ} \quad\left(\beta=60^{\circ}\right)$
$T=(500 \mathrm{lb}) \tan 30^{\circ} \quad T=289 \mathrm{lb}$
$A=\frac{500 \mathrm{lb}}{\cos 30^{\circ}} \quad \mathrm{A}=577 \mathrm{lb} \angle 60.0^{\circ}$

Problem 4.73

Three-force body: \mathbf{W} and $\mathbf{T}_{C D}$ intersect at E.

A 50-kg crate is attached to the trolley-beam system shown.
Knowing that $a=1.5 \mathrm{~m}$, determine (a) the tension in cable $C D$, (b) the reaction at B.
$\begin{aligned} \tan \beta & =\frac{0.7497 \mathrm{~m}}{1.5 \mathrm{~m}} \\ \beta & =26.556^{\circ}\end{aligned}$
$W=(50 \mathrm{~kg}) 9.81 \mathrm{~m} / \mathrm{s}^{2}$

$\frac{490.50 \mathrm{~N}}{\sin 61.556^{\circ}}=\frac{T_{C D}}{\sin 63.444^{\circ}}=\frac{B}{\sin 55^{\circ}}$
$T_{C D}=498.99 \mathrm{~N}$
$B=456.96 \mathrm{~N}$
$T_{C D}=499 \mathrm{~N}$
$\mathrm{B}=457 \mathrm{~N} \triangle 26.6^{\circ}$

Equilibrium of a Rigid Body in Three Dimensions

- Six scalar equations are required to express the conditions for the equilibrium of a rigid body in the general three dimensional case.

$$
\begin{array}{lll}
\sum F_{x}=0 & \sum F_{y}=0 & \sum F_{z}=0 \\
\sum M_{x}=0 & \sum M_{y}=0 & \sum M_{z}=0
\end{array}
$$

- These equations can be solved for no more than 6 unknowns which generally represent reactions at supports or connections or unknown applied forces.
- The scalar equations are conveniently obtained by applying the vector forms of the conditions for equilibrium,

$$
\sum \vec{F}=0 \quad \sum \vec{M}_{O}=\sum(\vec{r} \times \vec{F})=0
$$

Reactions at Supports and Connections for a Three-Dimensional Structure

Three force components

Reactions at Supports and Connections for a Three-Dimensional Structure

Sample Problem 4.8

$$
\vec{T}_{B D}=T_{B D} \frac{-8 \vec{i}+4 \vec{j}-8 \vec{k}}{12}
$$

$$
\vec{T}_{E C}=T_{E C} \frac{-6 \vec{i}+3 \vec{j}+2 \vec{k}}{7}
$$

A sign of uniform density weighs 270
lb and is supported by a ball-andsocket joint at A and by two cables.

$$
\begin{aligned}
\sum \vec{M}_{A}=\vec{r}_{B} \times \vec{T}_{B D}+\vec{r}_{E} \times \vec{T}_{E C}+(4 \mathrm{ft}) \vec{i} \times(-270 \mathrm{lb}) \vec{j}=0 \\
\vec{j}: \quad 5.333 T_{B D}-1.714 T_{E C}=0 \\
\vec{k}: \quad 2.667 T_{B D}+2.571 T_{E C}-1080 \mathrm{lb}=0
\end{aligned}
$$

Determine the tension in each cable
and the reaction at A.

$$
\begin{aligned}
& T_{B D}=101.3 \mathrm{lb} \quad T_{E C}=315 \mathrm{lb} \\
& \vec{A}=(338 \mathrm{lb}) \vec{i}+(101.2 \mathrm{lb}) \vec{j}-(22.5 \mathrm{lb}) \vec{k}
\end{aligned}
$$

Sample Problem 4.10

SAMPLE PROBLEM 4.10

A $450-\mathrm{lb}$ load hangs from the corner C of a rigid piece of pipe $A B C D$ which has been bent as shown. The pipe is supported by the ball-and-socket joints A and D, which are fastened, respectively, to the floor and to a vertical wall and by a cable attached at the midpoint E of the portion $B C$ of the pipe and at a point G on the wall. Determine (a) where G should be located if the tension in the cable is to be minimum, (b) the corresponding minimum value of the tension.

Problem 4.95

Two transmission belts pass over a double-sheaved pulley that is attached to an axle supported by bearings at A and D. The radius of the inner sheave is 125 mm and the radius of the outer sheave is 250 mm . Knowing that when the system is at rest, the tension is 90 N in both portions of belt B and 150 N in both portions of belt C, determine the reactions at A and D. Assume that the bearing at D does not exert any axial thrust.

Problem 4.121

The assembly shown is welded to collar A that fits on the vertical pin shown. The pin can exert couples about the x and z axes but does not prevent motion about or along the y axis. For the loading shown, determine the tension in each cable and the reaction at A.

