Ch. 5 Distributed Forces: Centroids and CG

• The earth exerts a gravitational force on each of the particles forming a body. These forces can be replaced by a single equivalent force equal to the weight of the body and applied at the center of gravity for the body.

• The centroid of an area is analogous to the center of gravity of a body; it is the “center of area.” The concept of the first moment of an area is used to locate the centroid.

• Determination of the area of a surface of revolution and the volume of a body of revolution are accomplished with the Theorems of Pappus-Guldinus.

Center of Gravity of a 2D Body

• Center of gravity of a plate

\[\sum M_y = \pi W = \sum x \Delta W = \int x \, dW \]

• Center of gravity of a wire

\[\sum M_y = \pi W = \sum y \Delta W = \int y \, dW \]
Centroids and First Moments of Areas and Lines

- Centroid of an area
 \[\bar{x}_W = \int x \, dW \]
 \[\bar{y}\left(\gamma \, A_t\right) = \int x \left(\gamma t\right) \, dA \]
 first moment (w.r.t x-axis)
 \[\bar{x}_A = \int x \, dA = Q_y \]
 first moment (w.r.t y-axis)
 \[\bar{y}_A = \int y \, dA = Q_x \]

- Centroid of a line
 \[\bar{x}_W = \int x \, dW \]
 \[\bar{y}\left(\gamma L_a\right) = \int x \left(\gamma a\right) \, dL \]
 \[\bar{x}_L = \int x \, dL \]
 \[\bar{y}_L = \int y \, dL \]

© 2013 The McGraw-Hill Companies, Inc. All rights reserved.

Determination of Centroids by Integration

\[\bar{x}_A = \int x \, dA = \int \int x \, dx \, dy = \int \bar{x}_{el} \, dA \]
\[\bar{y}_A = \int y \, dA = \int \int y \, dx \, dy = \int \bar{y}_{el} \, dA \]

- Double integration to find the first moment may be avoided by defining \(dA \) as a thin rectangle or strip.

© 2013 The McGraw-Hill Companies, Inc. All rights reserved.
Sample Problem 5.4

Determine by direct integration the location of the centroid of a parabolic spandrel.

\[y = \frac{b}{a^2} x^2 \quad \text{or} \quad x = \frac{a}{b^{1/2}} y^{1/2} \]

• Evaluate the total area.

\[A = \int dA = \int y \, dx = \frac{b}{a^2} \int_0^a x^2 \, dx = \left[\frac{b}{a^2} \cdot \frac{x^3}{3} \right]_0^a = \frac{ab^2}{3} \]

\[\bar{y} = \frac{1}{A} \int y \, dA = \frac{1}{\frac{ab^2}{3}} \int y \, dx = \frac{1}{\frac{ab^2}{3}} \left[\frac{b}{a^2} \cdot \frac{x^3}{3} \right]_0^a = \frac{3}{4} \]

[Diagrams showing the integration over the parabola area and the calculation of the centroid's location]
Problem 5.30

The homogeneous wire \(ABC \) is bent into a semicircular arc and a straight section as shown and is attached to a hinge at \(A \). Determine the value of \(\theta \) for which the wire is in equilibrium for the indicated position.

First Moments of Areas and Lines

- An area is symmetric with respect to an axis \(BB' \) if for every point \(P \) there exists a point \(P' \) such that \(PP' \) is perpendicular to \(BB' \) and is divided into two equal parts by \(BB' \).
- The first moment of an area with respect to a line of symmetry is zero.
- If an area possesses a line of symmetry, its centroid lies on that axis.
- If an area possesses two lines of symmetry, its centroid lies at their intersection.
- An area is symmetric with respect to a center \(O \) if for every element \(dA \) at \((x,y) \) there exists an area \(dA' \) of equal area at \((-x,-y)\).
- The centroid of the area coincides with the center of symmetry.
Centroids of Common Shapes of Areas

<table>
<thead>
<tr>
<th>Shape</th>
<th>(x)</th>
<th>(y)</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trapezoidal area</td>
<td>(\frac{h}{2})</td>
<td>(\frac{h}{2})</td>
<td>(A)</td>
</tr>
<tr>
<td>Quadrant of a circle</td>
<td>(\frac{r}{2})</td>
<td>(0)</td>
<td>(\frac{\pi r^2}{4})</td>
</tr>
<tr>
<td>Sector of a circle</td>
<td>(\frac{r}{2})</td>
<td>(\frac{\theta}{2})</td>
<td>(\frac{\theta r^2}{2})</td>
</tr>
<tr>
<td>Annulus</td>
<td>(\frac{r_2}{2})</td>
<td>(\frac{r_1}{2})</td>
<td>(\pi (r_2^2 - r_1^2))</td>
</tr>
<tr>
<td>Parabolic arc</td>
<td>(\frac{r}{2})</td>
<td>(\frac{r}{2})</td>
<td>(A)</td>
</tr>
<tr>
<td>Parabolic segment</td>
<td>(\frac{r}{2})</td>
<td>(\frac{r}{2})</td>
<td>(A)</td>
</tr>
<tr>
<td>General parabolic</td>
<td>(\frac{r}{2})</td>
<td>(\frac{r}{2})</td>
<td>(A)</td>
</tr>
<tr>
<td>Circular sector</td>
<td>(\frac{r}{2})</td>
<td>(\frac{r}{2})</td>
<td>(A)</td>
</tr>
</tbody>
</table>

Centroids of Common Shapes of Lines

<table>
<thead>
<tr>
<th>Shape</th>
<th>(x)</th>
<th>(y)</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circular arc</td>
<td>(\frac{r}{2})</td>
<td>(\frac{\pi r}{4})</td>
<td>(\pi r)</td>
</tr>
<tr>
<td>Sector of a circle</td>
<td>(\frac{r}{2})</td>
<td>(\frac{\theta}{2})</td>
<td>(\frac{\theta r}{2})</td>
</tr>
<tr>
<td>Arc of circle</td>
<td>(\frac{r}{2})</td>
<td>(\frac{\theta}{2})</td>
<td>(\theta r)</td>
</tr>
</tbody>
</table>

© 2013 The McGraw-Hill Companies, Inc. All rights reserved.
Composite Plates and Areas

- Composite plates
 \[\overline{X} \sum W = \sum \overline{x} W \]
 \[\overline{Y} \sum W = \sum \overline{y} W \]

- Composite area
 \[\overline{X} \sum A = \sum \overline{x} A \]
 \[\overline{Y} \sum A = \sum \overline{y} A \]

Sample Problem 5.1

For the plane area shown, determine the first moments with respect to the \(x \) and \(y \) axes and the location of the centroid.

SOLUTION:

- Divide the area into a triangle, rectangle, and semicircle with a circular cutout.
- Calculate the first moments of each area with respect to the axes.
- Find the total area and first moments of the triangle, rectangle, and semicircle. Subtract the area and first moment of the circular cutout.
- Compute the coordinates of the area centroid by dividing the first moments by the total area.
Sample Problem 5.1

- Find the total area and first moments of the triangle, rectangle, and semicircle. Subtract the area and first moment of the circular cutout.

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
\text{Component} & A, \text{ mm}^2 & y, \text{ mm} & \Sigma yA, \text{ mm}^3 & \Sigma yA, \text{ mm}^3 \\
\hline
\text{Rectangle} & (120)(60) = 9.6 \times 10^3 & 60 & +576 \times 10^3 & +384 \times 10^3 \\
\text{Triangle} & \frac{1}{2}(120)(60) = 3.6 \times 10^3 & 40 & +144 \times 10^3 & -72 \times 10^3 \\
\text{Semicircle} & \frac{1}{2}\pi(60)^2 = 5.655 \times 10^3 & 60 & +399.3 \times 10^3 & +59.4 \times 10^3 \\
\text{Circle} & -\pi(40)^2 = -5.027 \times 10^3 & 60 & -301.6 \times 10^3 & +402.2 \times 10^3 \\
\hline
\Sigma A = 13.828 \times 10^3 & & & & \\
\end{array}
\]

\[Q_x = +506.2 \times 10^3 \text{ mm}^3\]
\[Q_y = +757.7 \times 10^3 \text{ mm}^3\]

Sample Problem 5.1

- Compute the coordinates of the area centroid by dividing the first moments by the total area.

\[
\bar{x} = \frac{\Sigma xA}{\Sigma A} = \frac{+757.7 \times 10^3 \text{ mm}^3}{13.828 \times 10^3 \text{ mm}^2}
\]

\[\bar{x} = 54.8 \text{ mm}\]

\[
\bar{y} = \frac{\Sigma yA}{\Sigma A} = \frac{+506.2 \times 10^3 \text{ mm}^3}{13.828 \times 10^3 \text{ mm}^2}
\]

\[\bar{y} = 36.6 \text{ mm}\]
Theorems of Pappus-Guldinus

• Surface of revolution is generated by rotating a plane curve about a fixed axis.

THEOREM I:
Area of a surface of revolution is equal to the length of the generating curve times the distance traveled by the centroid through the rotation.
\[A = 2\pi yL \]

• Body of revolution is generated by rotating a plane area about a fixed axis.

THEOREM II:
Volume of a body of revolution is equal to the generating area times the distance traveled by the centroid through the rotation.
\[V = 2\pi yA \]
Sample Problem 5.7

The outside diameter of a pulley is 0.8 m, and the cross section of its rim is as shown. Knowing that the pulley is made of steel and that the density of steel is \(\rho = 7.85 \times 10^3 \text{ kg/m}^3 \) determine the mass and weight of the rim.

\[
\begin{array}{c}
\text{SOLUTION:} \\
\end{array}
\]

\begin{itemize}
\item Apply the theorem of Pappus-Guldinus to evaluate the volumes of revolution of the pulley, which we will form as a large rectangle with an inner rectangular cutout.
\item Multiply by density and acceleration to get the mass and weight.
\end{itemize}

\[
The \text{SOLUTION:} \\
\begin{array}{c}
\text{Apply the theorem of Pappus-Guldinus to evaluate the volumes of revolution for the rectangular rim section and the inner cutout section.} \\
\text{Multiply by density and acceleration to get the mass and weight.} \\
\end{array}
\]

<table>
<thead>
<tr>
<th>Area, mm(^2)</th>
<th>(\ell), mm</th>
<th>Distance Traveled by (C), mm</th>
<th>Volume, mm(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 1000, 375</td>
<td>2, 365</td>
<td>(2\pi(375) = 2356)</td>
<td>((5000)(2356) = 11.78 \times 10^6)</td>
</tr>
<tr>
<td>1, -1800, 365</td>
<td></td>
<td>(2\pi(365) = 2293)</td>
<td>((-1800)(2293) = -4.13 \times 10^6)</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
m &= \rho V = (7.85 \times 10^3 \text{ kg/m}^3)(7.65 \times 10^6 \text{ mm}^3)(10^{-6} \text{ m}^3/\text{mm}^3) \\
m &= 60.0 \text{ kg} \\
W &= mg = (60.0 \text{ kg})(9.81 \text{ m/s}^2) \\
W &= 589 \text{ N}
\end{align*}
\]
Problem 5.64

Determine the capacity, in liters, of the punch bowl shown if \(R = 250 \text{ mm} \).

Distributed Loads on Beams

\[W = \int_{0}^{L} w \, dx = \int_{A} dA = A \]

- A distributed load is represented by plotting the load per unit length, \(w \, (\text{N/m}) \). The total load is equal to the area under the load curve.

\[(OP)W = \int x \, dW \]

\[(OP)A = \int x \, dA = \bar{x}A \]

- A distributed load can be replace by a concentrated load with a magnitude equal to the area under the load curve and a line of action passing through the area centroid.
Sample Problem 5.9

A beam supports a distributed load as shown. Determine the equivalent concentrated load and the reactions at the supports.

\[w_A = 1500 \text{ N/m} \]
\[w_B = 4500 \text{ N} \]
\[L = 6 \text{ m} \]
\[x = 4 \text{ m} \]
\[y_B = 0 \]
\[x_B = 5.7 \text{ kN} \]
\[y_A = 5.10 \text{ kN} \]
\[F = 18.0 \text{ kN} \]
\[X = 3.5 \text{ m} \]
\[B_y = 10.5 \text{ kN} \]
\[A_y = 7.5 \text{ kN} \]
\[B_x = 0 \]

Center of Gravity of a 3D Body: Centroid of a Volume

- Center of gravity \(G \)
 \[-W \hat{j} = \sum (-\Delta W \hat{j}) \]
 \[\bar{r}_G \times (-W \hat{j}) = \sum \left[\bar{r} \times (-\Delta W \hat{j}) \right] \]
 \[\bar{r}_G W \times (-\hat{j}) = (\sum \bar{r} \Delta W) \times (-\hat{j}) \]
 \[W = \int dW \quad \bar{r}_G W = \int \bar{r} dW \]

- Results are independent of body orientation,
 \[\bar{x} W = \int xdW \quad \bar{y} W = \int ydW \quad \bar{z} W = \int zdW \]

- For homogeneous bodies,
 \[W = \gamma V \quad \text{and} \quad dW = \gamma dV \]
 \[\bar{x} V = \int xdV \quad \bar{y} V = \int ydV \quad \bar{z} V = \int zdV \]
Centroids of Common 3D Shapes

<table>
<thead>
<tr>
<th>Shape</th>
<th>(x)</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemisphere</td>
<td>(\frac{3}{4})</td>
<td>(\frac{\pi}{2} r^4)</td>
</tr>
<tr>
<td>Spherical shell of revolution</td>
<td>(\frac{1}{2})</td>
<td>(\frac{4}{3} \pi r^3)</td>
</tr>
<tr>
<td>Paraboloid of revolution</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2} \pi ab^2)</td>
</tr>
</tbody>
</table>

Composite 3D Bodies

- Moment of the total weight concentrated at the center of gravity \(G \) is equal to the sum of the moments of the weights of the component parts.
 \[x \sum W = \sum xW \quad y \sum W = \sum yW \quad z \sum W = \sum zW \]
- For homogeneous bodies,
 \[x \sum V = \sum xV \quad y \sum V = \sum yV \quad z \sum V = \sum zV \]
Sample Problem 5.12

Locate the center of gravity of the steel machine element. The diameter of each hole is 1 in.

SOLUTION:

- Form the machine element from a rectangular parallelepiped and a quarter cylinder and then subtracting two 1-in. diameter cylinders.
Sample Problem 5.12

<table>
<thead>
<tr>
<th>V, in³</th>
<th>x, in.</th>
<th>y, in.</th>
<th>z, in.</th>
<th>xy, in⁴</th>
<th>yz, in⁴</th>
<th>2V, in⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>4.5</td>
<td>0.25</td>
<td>-1</td>
<td>2.35</td>
<td>1.125</td>
<td>-4.5</td>
</tr>
<tr>
<td>II</td>
<td>1.5</td>
<td>1.5465</td>
<td>-0.8498</td>
<td>0.25</td>
<td>2.139</td>
<td>-1.333</td>
</tr>
<tr>
<td>III</td>
<td>-0.3027</td>
<td>0.25</td>
<td>3.5</td>
<td>-0.098</td>
<td>0.393</td>
<td>0.393</td>
</tr>
<tr>
<td>IV</td>
<td>0.3027</td>
<td>0.25</td>
<td>1.5</td>
<td>-0.098</td>
<td>0.393</td>
<td>1.374</td>
</tr>
<tr>
<td>ΣV = 5.286</td>
<td></td>
<td></td>
<td></td>
<td>Σxy = 3.048</td>
<td>Σyz = -5.047</td>
<td>Σ2V = 8.355</td>
</tr>
</tbody>
</table>

\[
X = \frac{\sum xy}{\sum V} = \frac{(3.08 \text{ in}^4)}{(5.286 \text{ in}^3)} \quad X = 0.577 \text{ in}
\]

\[
Y = \frac{\sum yz}{\sum V} = \frac{(-5.047 \text{ in}^4)}{(5.286 \text{ in}^3)} \quad Y = 0.577 \text{ in}
\]

\[
Z = \frac{\sum z}{\sum V} = \frac{(1.618 \text{ in}^4)}{(5.286 \text{ in}^3)} \quad Z = 0.577 \text{ in}
\]

Problem 5.110

A wastebasket, designed to fit in the corner of a room, is 16 in. high and has a base in the shape of a quarter circle of radius 10 in. Locate the center of gravity of the wastebasket, knowing that it is made of sheet metal of uniform thickness.