Chapter 9, Distributed Forces: Moments of Inertia

- Previously considered distributed forces which were proportional to the area or volume over which they act.
- The resultant was obtained by summing or integrating over the areas or volumes.
- The moment of the resultant about any axis was determined by computing the first moments of the areas or volumes about that axis.
- Will now consider forces which are proportional to the area or volume over which they act but also vary linearly with distance from a given axis.
- It will be shown that the magnitude of the resultant depends on the first moment of the force distribution with respect to the axis.
- The point of application of the resultant depends on the second moment of the distribution with respect to the axis.
- Current chapter will present methods for computing the moments and products of inertia for areas and masses.

Moment of Inertia of an Area

- Consider distributed forces $\Delta \vec{F}$ whose magnitudes are proportional to the elemental areas ΔA on which they
 act and also vary linearly with the distance of ΔA from a given axis.
- Example: Consider the net hydrostatic force on a submerged circular gate.
$\Delta F=p \Delta A$
The pressure, p , linearly increases with depth
$p=2 y$, so
$\Delta F=\gamma y \Delta A$, and the resultant force is
$R=\sum \Delta F=\gamma \int y d A$, while the moment produced is
all $\Delta \mathrm{A}$
$M_{x}=\gamma \int y^{2} d A$
- The integral $\int y d A$ is already familiar from our study of centroids.
- The integral $\int y^{2} d A$ is one subject of this chapter, and is known as the area moment of inertia, or more precisely, the second moment of the area.

Moment of Inertia of an Area by Integration

- Second moments or moments of inertia of an area with respect to the x and y axes,

$$
I_{x}=\int y^{2} d A \quad I_{y}=\int x^{2} d A
$$

- Evaluation of the integrals is simplified by

 choosing $d A$ to be a thin strip parallel to one of the coordinate axes.
- For a rectangular area,

$$
I_{x}=\int y^{2} d A=\int_{0}^{h} y^{2} b d y=\frac{1}{3} b h^{3}
$$

- The formula for rectangular areas may also be applied to strips parallel to the axes,

$$
d I_{x}=\frac{1}{3} y^{3} d x \quad d I_{y}=x^{2} d A=x^{2} y d x
$$

Polar Moment of Inertia

- The polar moment of inertia is an important parameter in problems involving torsion of cylindrical shafts and rotations of slabs.

$$
J_{0}=\int r^{2} d A
$$

- The polar moment of inertia is related to the rectangular moments of inertia,

$$
\begin{aligned}
J_{0} & =\int r^{2} d A=\int\left(x^{2}+y^{2}\right) d A=\int x^{2} d A+\int y^{2} d A \\
& =I_{y}+I_{x}
\end{aligned}
$$

Radius of Gyration of an Area

- Consider area A with moment of inertia I_{x}. Imagine that the area is concentrated in a thin strip parallel to the x axis with equivalent I_{x}.
$I_{X}=k_{X}^{2} A \quad k_{x}=\sqrt{\frac{I_{X}}{A}}$

$$
\begin{aligned}
k_{x}= & \text { radius of gyration with respect } \\
& \text { to the } x \text { axis }
\end{aligned}
$$

- Similarly,

$$
\begin{aligned}
& I_{y}=k_{y}^{2} A \quad k_{y}=\sqrt{\frac{I_{y}}{A}} \\
& J_{O}=k_{O}^{2} A \quad k_{O}=\sqrt{\frac{J_{O}}{A}} \\
& k_{O}^{2}=k_{x}^{2}+k_{y}^{2}
\end{aligned}
$$

Sample Problem 9.1

Determine the moment of inertia of a triangle with respect to its base.

Could a vertical strip have been chosen for the calculation?
What is the disadvantage to that choice? Think, then discuss with a neighbor.

SOLUTION:

- A differential strip parallel to the x axis is chosen for dA.

$$
d I_{x}=y^{2} d A \quad d A=l d y
$$

- For similar triangles,

$$
\frac{l}{b}=\frac{h-y}{h} \quad l=b \frac{h-y}{h} \quad d A=b \frac{h-y}{h} d y
$$

- Integrating $d I_{x}$ from $y=0$ to $y=h$,

$$
\begin{aligned}
& I_{x}=\int y^{2} d A=\int_{0}^{h} y^{2} b \frac{h-y}{h} d y=\frac{b}{h} \int_{0}^{h}\left(h y^{2}-y^{3}\right) d y \\
&=\frac{b}{h}\left[h \frac{y^{3}}{3}-\frac{y^{4}}{4}\right]_{0}^{h} \\
& I_{x}=\frac{b h^{3}}{12}
\end{aligned}
$$

Sample Problem 9.2

a) Determine the centroidal polar moment of inertia of a circular area by direct integration.
b) Using the result of part a, determine the moment of inertia of a circular area with respect to a diameter of the area.

SOLUTION:

- An annular differential area element is chosen,
$d J_{O}=u^{2} d A \quad d A=2 \pi u d u$
$J_{O}=\int d J_{O}=\int_{0}^{r} u^{2}(2 \pi u d u)=2 \pi \int_{0}^{r} u^{3} d u$

$$
J_{O}=\frac{\pi}{2} r^{4}
$$

- From symmetry, $I_{x}=I_{y}$,

$$
J_{O}=I_{x}+I_{y}=2 I_{x} \quad \frac{\pi}{2} r^{4}=2 I_{x}
$$

$$
I_{\text {diameter }}=I_{X}=\frac{\pi}{4} r^{4}
$$

Parallel Axis Theorem

- Consider moment of inertia I of an area A with respect to the axis $A A^{\prime}$

$$
I=\int y^{2} d A
$$

- The axis $B B^{\prime}$ passes through the area centroid and is called a centroidal axis.

$$
\begin{aligned}
I & =\int y^{2} d A=\int\left(y^{\prime}+d\right)^{2} d A \\
& =\int y^{\prime 2} d A+2 d \int y^{\prime} d A+d^{2} \int d A
\end{aligned}
$$

$$
I=\bar{I}+A d^{2} \quad \text { parallel axis theorem }
$$

Parallel Axis Theorem

- Moment of inertia I_{T} of a circular area with respect to a tangent to the circle,

$$
\begin{aligned}
I_{T} & =\bar{I}+A d^{2}=\frac{1}{4} \pi r^{4}+\left(\pi r^{2}\right) r^{2} \\
& =\frac{5}{4} \pi r^{4}
\end{aligned}
$$

- Moment of inertia of a triangle with respect to a centroidal axis,

$$
\begin{aligned}
I_{A A^{\prime}} & =\bar{I}_{B B^{\prime}}+A d^{2} \\
\bar{I}_{B B^{\prime}} & =I_{A A^{\prime}}-A d^{2}=\frac{1}{12} b h^{3}-\frac{1}{2} b h\left(\frac{1}{3} h\right)^{2} \\
& =\frac{1}{36} b h^{3}
\end{aligned}
$$

Moments of Inertia of Composite Areas

- The moment of inertia of a composite area A about a given axis is obtained by adding the moments of inertia of the component areas $A_{1}, A_{2}, A_{3}, \ldots$, with respect to the same axis.

Problem 9.13

Determine by direct integration the moment of inertia of the shaded area with respect to (a) the x axis (b) the y-axis

Moments of Inertia of Composite Areas

Sample Problem 9.4

The strength of a W14x38 rolled steel beam is increased by attaching a plate to its upper flange.

Determine the moment of inertia and radius of gyration with respect to an axis which is parallel to the plate and passes through the centroid of the section.

SOLUTION:

- Determine location of the centroid of composite section with respect to a coordinate system with origin at the centroid of the beam section.
- Apply the parallel axis theorem to determine moments of inertia of beam section and plate with respect to composite section centroidal axis.
- Calculate the radius of gyration from the moment of inertia of the composite section.

Sample Problem 9.4

SOLUTION:

- Determine location of the centroid of composite section with respect to a coordinate system with origin at the centroid of the beam section.

Section	A, in 2	\bar{y}, in.	$\bar{y} A$, in 3
Plate	6.75	7.425	50.12
Beam Section	11.20	0	0
	$\sum A=17.95$		$\sum \bar{y} A=50.12$

$$
\bar{Y} \sum A=\sum \bar{y} A \quad \bar{Y}=\frac{\sum \bar{y} A}{\sum A}=\frac{50.12 \mathrm{in}^{3}}{17.95 \mathrm{in}^{2}}=2.792 \mathrm{in} .
$$

Sample Problem 9.4

- Apply the parallel axis theorem to determine moments of inertia of beam section and plate with respect to composite section centroidal axis.

$$
\begin{aligned}
I_{x^{\prime}, \text { beam section }} & =\bar{I}_{x}+A \bar{Y}^{2}=385+(11.20)(2.792)^{2} \\
& =472.3 \mathrm{in}^{4} \\
I_{x^{\prime}, \text { plate }} & =\bar{I}_{x}+A d^{2}=\frac{1}{12}(9)\left(\frac{3}{4}\right)^{3}+(6.75)(7.425-2.792)^{2} \\
& =145.2 \mathrm{in}^{4}
\end{aligned}
$$

$$
I_{x^{\prime}}=I_{x^{\prime} \text {,beam section }}+I_{x^{\prime}, \text { plate }}=472.3+145.2
$$

$$
I_{x^{\prime}}=618 \mathrm{in}^{4}
$$

- Calculate the radius of gyration from the moment of inertia of the composite section.

$$
k_{x^{\prime}}=\sqrt{\frac{I_{x^{\prime}}}{A}}=\frac{617.5 \mathrm{in}^{4}}{17.95 \mathrm{in}^{2}} \quad k_{x^{\prime}}=5.87 \mathrm{in} .
$$

Sample Problem 9.5

Determine the moment of inertia of the shaded area with respect to the x axis.

SOLUTION:

- Compute the moments of inertia of the bounding rectangle and half-circle with respect to the x axis.
- The moment of inertia of the shaded area is obtained by subtracting the moment of inertia of the half-circle from the moment of inertia of the rectangle.

Sample Problem 9.5

SOLUTION:

- Compute the moments of inertia of the bounding rectangle and half-circle with respect to the x axis.

Rectangle:

$$
I_{x}=\frac{1}{3} b h^{3}=\frac{1}{3}(240)(120)=138.2 \times 10^{6} \mathrm{~mm}^{4}
$$

Half-circle:
moment of inertia with respect to $A A^{\prime}$,

$$
I_{A A^{\prime}}=\frac{1}{8} \pi r^{4}=\frac{1}{8} \pi(90)^{4}=25.76 \times 10^{6} \mathrm{~mm}^{4}
$$

moment of inertia with respect to x^{\prime},

$$
\begin{aligned}
\bar{I}_{x^{\prime}} & =I_{A A^{\prime}}-A a^{2}=\left(25.76 \times 10^{6}\right)\left(12.72 \times 10^{3}\right) \\
& =7.20 \times 10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

$a=\frac{4 r}{3 \pi}=\frac{(4)(90)}{3 \pi}=38.2 \mathrm{~mm}$
$\mathrm{b}=120-\mathrm{a}=81.8 \mathrm{~mm}$
A $=\frac{1}{2} \pi r^{2}=\frac{1}{2} \pi(90)^{2}$
$=12.72 \times 10^{3} \mathrm{~mm}^{2}$
moment of inertia with respect to x,

$$
\begin{aligned}
I_{x} & =\bar{I}_{x^{\prime}}+A b^{2}=7.20 \times 10^{6}+\left(12.72 \times 10^{3}\right)(81.8)^{2} \\
& =92.3 \times 10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

Sample Problem 9.5

- The moment of inertia of the shaded area is obtained by subtracting the moment of inertia of the half-circle from the moment of inertia of the rectangle.

Two important things to note:

1. The moments of inertia had to reference the same axis.
2. The parallel axis theorem had to be applied twice to the semicircle.

Product of Inertia

- Product of Inertia:

$$
I_{x y}=\int x y d A
$$

- When the x axis, the y axis, or both are an axis of symmetry, the product of inertia is zero.

- Parallel axis theorem for products of inertia:

$$
I_{x y}=\bar{I}_{x y}+\overline{x y} A
$$

Principal Axes and Principal Moments of Inertia

Given $I_{x}=\int y^{2} d A \quad I_{y}=\int x^{2} d A$

$$
I_{x y}=\int x y d A
$$

we wish to determine moments and product of inertia with respect to new axes x^{\prime} and y^{\prime}.

Note: $x^{\prime}=x \cos \theta+y \sin \theta$
$y^{\prime}=y \cos \theta-x \sin \theta$

- The change of axes yields
$I_{x^{\prime}}=\frac{I_{x}+I_{y}}{2}+\frac{I_{x}-I_{y}}{2} \cos 2 \theta-I_{x y} \sin 2 \theta$
$I_{y^{\prime}}=\frac{I_{x}+I_{y}}{2}-\frac{I_{x}-I_{y}}{2} \cos 2 \theta+I_{x y} \sin 2 \theta$
$I_{x^{\prime} y^{\prime}}=\frac{I_{x}-I_{y}}{2} \sin 2 \theta+I_{x y} \cos 2 \theta$
- The equations for $I_{x^{\prime}}$ and $I_{x^{\prime} y}$, are the parametric equations for a circle,

$$
\begin{aligned}
& \left(I_{x^{\prime}}-I_{\text {ave }}\right)^{2}+I_{x^{\prime} y^{\prime}}^{2}=R^{2} \\
& I_{\text {ave }}=\frac{I_{x}+I_{y}}{2} \quad R=\sqrt{\left(\frac{I_{x}-I_{y}}{2}\right)+I_{x y}^{2}}
\end{aligned}
$$

- The equations for $I_{y^{\prime}}$, and $I_{x^{\prime} y}$, lead to the same circle.

Principal Axes and Principal Moments of Inertia

- At the points A and $B, I_{x^{\prime} y^{\prime}}=0$ and $I_{x^{\prime}}$, is a maximum and minimum, respectively.

$$
\begin{aligned}
I_{\text {max }, \min } & =I_{a v e} \pm R \\
\tan 2 \theta_{m} & =-\frac{2 I_{x y}}{I_{x}-I_{y}}
\end{aligned}
$$

- The equation for $\left(_{m}\right.$ defines two angles, 90° apart which correspond to the principal axes of the area about O.

$$
\begin{aligned}
& \left(I_{x^{\prime}}-I_{\text {ave }}\right)^{2}+I_{x^{\prime} y^{\prime}}^{2}=R^{2} \\
& I_{\text {ave }}=\frac{I_{x}+I_{y}}{2} \quad R=\sqrt{\left(\frac{I_{x}-I_{y}}{2}\right)+I_{x y}^{2}}
\end{aligned}
$$

- $I_{\max }$ and $I_{\text {min }}$ are the principal moments of inertia of the area about O.

Sample Problem 9.6

Determine the product of inertia of the right triangle (a) with respect to the x and y axes and (b) with respect to centroidal axes parallel to the x and y axes.

SOLUTION:

- Determine the product of inertia using direct integration with the parallel axis theorem on vertical differential area strips
- Apply the parallel axis theorem to evaluate the product of inertia with respect to the centroidal axes.

Sample Problem 9.6

SOLUTION:

- Determine the product of inertia using direct integration with the parallel axis theorem on vertical differential area strips

$$
\begin{array}{ll}
y=h\left(1-\frac{x}{b}\right) & d A=y d x=h\left(1-\frac{x}{b}\right) d x \\
\bar{x}_{e l}=x & \bar{y}_{e l}=\frac{1}{2} y=\frac{1}{2} h\left(1-\frac{x}{b}\right)
\end{array}
$$

Integrating $d I_{x}$ from $x=0$ to $x=b$,

$$
\begin{aligned}
& I_{x y}=\int d I_{x y}=\int \bar{x}_{e l} \bar{y}_{e l} d A=\int_{0}^{b} x\left(\frac{1}{2}\right) h^{2}\left(1-\frac{x}{b}\right)^{2} d x \\
&=h^{2} \int_{0}^{b}\left(\frac{x}{2}-\frac{x^{2}}{b}+\frac{x^{3}}{2 b^{2}}\right) d x=h\left[\frac{x^{2}}{4}-\frac{x^{3}}{3 b}+\frac{x^{4}}{8 b^{2}}\right]_{0}^{b} \\
& I_{x y}=\frac{1}{24} b^{2} h^{2}
\end{aligned}
$$

Sample Problem 9.6

- Apply the parallel axis theorem to evaluate the product of inertia with respect to the centroidal axes.

$$
\bar{x}=\frac{1}{3} b \quad \bar{y}=\frac{1}{3} h
$$

With the results from part a,

$$
\begin{aligned}
I_{x y} & =\bar{I}_{x^{\prime \prime} y^{\prime \prime}}+\bar{x} \bar{y} A \\
\bar{I}_{x^{\prime \prime} y^{\prime \prime}} & =\frac{1}{24} b^{2} h^{2}-\left(\frac{1}{3} b\right)\left(\frac{1}{3} h\right)\left(\frac{1}{2} b h\right)
\end{aligned}
$$

$$
\bar{I}_{x^{\prime \prime} y^{\prime \prime}}=-\frac{1}{72} b^{2} h^{2}
$$

Sample Problem 9.7

For the section shown, the moments of inertia with respect to the x and y axes are $I_{x}=10.38$ in 4 and $I_{y}=6.97 \mathrm{in}^{4}$.
Determine (a) the orientation of the principal axes of the section about O, and (b) the values of the principal moments of inertia about O.

SOLUTION:

- Compute the product of inertia with respect to the $x y$ axes by dividing the section into three rectangles and applying the parallel axis theorem to each.
- Determine the orientation of the principal axes (Eq. 9.25) and the principal moments of inertia (Eq. 9. 27).

Sample Problem 9.7

SOLUTION:

- Compute the product of inertia with respect to the $x y$ axes by dividing the section into three rectangles.
Apply the parallel axis theorem to each rectangle,

$$
I_{x y}=\sum\left(\bar{I}_{x^{\prime} y^{\prime}}+\overline{x y} A\right)
$$

Note that the product of inertia with respect to centroidal axes parallel to the $x y$ axes is zero for each rectangle.

\[

\]

Sample Problem 9.7

$$
I_{x}=10.38 \mathrm{in}^{4}
$$

$$
I_{y}=6.97 \mathrm{in}^{4}
$$

$$
I_{x y}=-6.56 \mathrm{in}^{4}
$$

- Determine the orientation of the principal axes (Eq. 9.25) and the principal moments of inertia (Eq. 9. 27).
$\tan 2 \theta_{m}=-\frac{2 I_{x y}}{I_{x}-I_{y}}=-\frac{2(-6.56)}{10.38-6.97}=+3.85$
$2 \theta_{m}=75.4^{\circ}$ and 255.4°

$$
\theta_{m}=37.7^{\circ} \text { and } \theta_{m}=127.7^{\circ}
$$

$I_{\text {max }, \min }=\frac{I_{x}+I_{y}}{2} \pm \sqrt{\left(\frac{I_{x}-I_{y}}{2}\right)^{2}+I_{x y}^{2}}$

$$
=\frac{10.38+6.97}{2} \pm \sqrt{\left(\frac{10.38-6.97}{2}\right)^{2}+(-6.56)^{2}}
$$

$$
\begin{aligned}
& I_{a}=I_{\max }=15.45 \mathrm{in}^{4} \\
& I_{b}=I_{\min }=1.897 \mathrm{in}^{4}
\end{aligned}
$$

Mohr's Circle for Moments and Products of Inertia

- The moments and product of inertia for an area are plotted as shown and used to construct Mohr's circle,

$$
I_{\text {ave }}=\frac{I_{x}+I_{y}}{2} \quad R=\sqrt{\left(\frac{I_{x}-I_{y}}{2}\right)+I_{x y}^{2}}
$$

- Mohr's circle may be used to graphically or analytically determine the moments and product of inertia for any other rectangular axes including the principal axes and principal moments and products of inertia.

Sample Problem 9.8

The moments and product of inertia with respect to the x and y axes are $I_{x}=$ $7.24 \times 106 \mathrm{~mm}^{4}, I_{y}=2.61 \times 106 \mathrm{~mm}^{4}$, and $I_{x y}=-2.54 \times 10^{6} \mathrm{~mm}^{4}$.
Using Mohr's circle, determine (a) the principal axes about O, (b) the values of the principal moments about O, and (c) the values of the moments and product of inertia about the x^{\prime} and y^{\prime} axes

SOLUTION:

- Plot the points $\left(I_{x}, I_{x y}\right)$ and $\left(I_{y},-I_{x y}\right)$. Construct Mohr's circle based on the circle diameter between the points.
- Based on the circle, determine the orientation of the principal axes and the principal moments of inertia.
- Based on the circle, evaluate the moments and product of inertia with respect to the x ' y ' axes.

Sample Problem 9.8

$I_{X}=7.24 \times 10^{6} \mathrm{~mm}^{4}$
$I_{y}=2.61 \times 10^{6} \mathrm{~mm}^{4}$
$I_{x y}=-2.54 \times 10^{6} \mathrm{~mm}^{4}$

SOLUTION:

- Plot the points $\left(I_{x}, I_{x y}\right)$ and $\left(I_{y},-I_{x y}\right)$. Construct Mohr's circle based on the circle diameter between the points.

$$
\begin{aligned}
O C & =I_{\text {ave }}=\frac{1}{2}\left(I_{x}+I_{y}\right)=4.925 \times 10^{6} \mathrm{~mm}^{4} \\
C D & =\frac{1}{2}\left(I_{x}-I_{y}\right)=2.315 \times 10^{6} \mathrm{~mm}^{4} \\
R & =\sqrt{(C D)^{2}+(D X)^{2}}=3.437 \times 10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

- Based on the circle, determine the orientation of the principal axes and the principal moments of inertia.

$$
\begin{array}{lll}
\tan 2 \theta_{m}=\frac{D X}{C D}=1.097 & 2 \theta_{m}=47.6^{\circ} & \theta_{m}=23.8^{\circ} \\
I_{\max }=O A=I_{\text {ave }}+R & I_{\max }=8.36 \times 10^{6} \mathrm{~mm}^{4} \\
I_{\min }=O B=I_{\text {ave }}-R & I_{\min }=1.49 \times 10^{6} \mathrm{~mm}^{4}
\end{array}
$$

Sample Problem 9.8

- Based on the circle, evaluate the moments and product of inertia with respect to the $x^{\prime} y^{\prime}$ axes.
The points X^{\prime} and Y^{\prime} corresponding to the x^{\prime} and y^{\prime} axes are obtained by rotating $C X$ and $C Y$ counterclockwise through an angle $\left(=2\left(60^{\circ}\right)=120^{\circ}\right.$. The angle that $C X^{\prime}$, forms with the x^{\prime} axes is $\phi=120^{\circ}-47.6^{\circ}=72.4^{\circ}$.

$$
I_{x^{\prime} y^{\prime}}=F X^{\prime}=C Y^{\prime} \sin \varphi=R \sin 72.4^{\circ}
$$

$$
\begin{aligned}
O C & =I_{\text {ave }}=4.925 \times 10^{6} \mathrm{~mm}^{4} \\
R & =3.437 \times 10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

$$
\begin{array}{r}
I_{x^{\prime}}=O F=O C+C X^{\prime} \cos \varphi=I_{\text {ave }}+R \cos 72.4^{o} \\
I_{x^{\prime}}=5.96 \times 10^{6} \mathrm{~mm}^{4} \\
I_{y^{\prime}}=O G=O C-C Y^{\prime} \cos \varphi=I_{\text {ave }}-R \cos 72.4^{o} \\
I_{y^{\prime}}=3.89 \times 10^{6} \mathrm{~mm}^{4}
\end{array}
$$

$$
I_{x^{\prime} y^{\prime}}=3.28 \times 10^{6} \mathrm{~mm}^{4}
$$

Moment of Inertia of a Mass

- Angular acceleration about the axis $A A^{\prime}$ of the small mass Δm due to the application of a couple is proportional to $r^{2} \Delta m$.
$r^{2} \Delta m=$ moment of inertia of the mass Δm with respect to the axis $A A^{\prime}$
- For a body of mass m the resistance to rotation about the axis $A A^{\prime}$ is

$$
\begin{aligned}
I & =r_{1}^{2} \Delta m+r_{2}^{2} \Delta m+r_{3}^{2} \Delta m+\cdots \\
& =\int r^{2} d m=\text { mass moment of inertia }
\end{aligned}
$$

- The radius of gyration for a concentrated mass with equivalent mass moment of inertia is

$$
I=k^{2} m \quad k=\sqrt{\frac{I}{m}}
$$

Moment of Inertia of a Mass

- Moment of inertia with respect to the y coordinate axis is

$$
I_{y}=\int r^{2} d m=\int\left(z^{2}+x^{2}\right) d m
$$

- Similarly, for the moment of inertia with respect to the x and z axes,

$$
\begin{aligned}
& I_{x}=\int\left(y^{2}+z^{2}\right) d m \\
& I_{z}=\int\left(x^{2}+y^{2}\right) d m
\end{aligned}
$$

- In SI units,

$$
I=\int r^{2} d m=\left(\mathrm{kg} \cdot \mathrm{~m}^{2}\right)
$$

In U.S. customary units,

$$
I=\left(s l u g \cdot f t^{2}\right)=\left(\frac{l b \cdot s^{2}}{f t} f t^{2}\right)=\left(l b \cdot f t \cdot s^{2}\right)
$$

Parallel Axis Theorem

- For the rectangular axes with origin at O and parallel centroidal axes,

$$
\begin{aligned}
I_{x} & =\int\left(y^{2}+z^{2}\right) d m=\int\left[\left(y^{\prime}+\bar{y}\right)^{2}+\left(z^{\prime}+\bar{z}\right)^{2}\right] d m \\
& =\int\left(y^{\prime 2}+z^{\prime 2}\right) d m+2 \bar{y} \int y^{\prime} d m+2 \bar{z} \int z^{\prime} d m+\left(\bar{y}^{2}+\bar{z}^{2}\right) \int d m \\
I_{x} & =\bar{I}_{x^{\prime}}+m\left(\bar{y}^{2}+\bar{z}^{2}\right) \\
I_{y} & =\bar{I}_{y^{\prime}}+m\left(\bar{z}^{2}+\bar{x}^{2}\right) \\
I_{z} & =\bar{z}_{z^{\prime}}+m\left(\bar{x}^{2}+\bar{y}^{2}\right)
\end{aligned}
$$

- Generalizing for any axis $A A^{\prime}$ 'and a parallel centroidal axis,
$I=\bar{I}+m d^{2}$

Moments of Inertia of Thin Plates

- For a thin plate of uniform thickness t and homogeneous material of density ρ, the mass moment of inertia with respect to axis $A A^{\prime}$ contained in the plate is

$$
\begin{aligned}
I_{A A^{\prime}} & =\int r^{2} d m=\rho t \int r^{2} d A \\
& =\rho t I_{A A^{\prime}, \text { area }}
\end{aligned}
$$

- Similarly, for perpendicular axis BB' which is also contained in the plate,

$$
I_{B B^{\prime}}=\rho t I_{B B^{\prime}, \text { area }}
$$

- For the axis $C C^{\prime}$ which is perpendicular to the plate,

$$
\begin{aligned}
I_{C C^{\prime}} & =\rho t J_{C, \text { area }}=\rho t\left(I_{A A^{\prime}, \text { area }}+I_{B B^{\prime}, \text { area }}\right) \\
& =I_{A A^{\prime}}+I_{B B^{\prime}}
\end{aligned}
$$

Moments of Inertia of Thin Plates

- For the principal centroidal axes on a rectangular plate,

$$
\begin{aligned}
& I_{A A^{\prime}}=\rho t I_{A A^{\prime}, a r e a}=\rho t\left(\frac{1}{12} a^{3} b\right)=\frac{1}{12} m a^{2} \\
& I_{B B^{\prime}}=\rho t I_{B B^{\prime}, \text { area }}=\rho t\left(\frac{1}{12} a b^{3}\right)=\frac{1}{12} m b^{2} \\
& I_{C C^{\prime}}=I_{A A^{\prime}, \text { mass }}+I_{B B^{\prime}, \text { mass }}=\frac{1}{12} m\left(a^{2}+b^{2}\right)
\end{aligned}
$$

- For centroidal axes on a circular plate,

$$
\begin{aligned}
& I_{A A^{\prime}}=I_{B B^{\prime}}=\rho t I_{A A^{\prime}, \text { area }}=\rho t\left(\frac{1}{4} \pi r^{4}\right)=\frac{1}{4} m r^{2} \\
& I_{C C^{\prime}}=I_{A A^{\prime}}+I_{B B^{\prime}}=\frac{1}{2} m r^{2}
\end{aligned}
$$

Moments of Inertia of a 3D Body by Integration

- Moment of inertia of a homogeneous body is obtained from double or triple
 integrations of the form

$$
I=\rho \int r^{2} d V
$$

- For bodies with two planes of symmetry, the moment of inertia may be obtained from a single integration by choosing thin slabs perpendicular to the planes of symmetry for $d m$.
- The moment of inertia with respect to a particular axis for a composite body may be obtained by adding the moments of inertia with respect to the same axis of the components.

Moments of Inertia of Common Geometric Shapes

Sample Problem 9.12

SOLUTION:

- With the forging divided into a prism and two cylinders, compute the mass and moments of inertia of each component with respect to the $x y z$ axes using the parallel axis theorem.
- Add the moments of inertia from the components to determine the total moments of inertia for the forging.

Determine the moments of inertia of the steel forging with respect to the $x y z$ coordinate axes, knowing that the specific weight of steel is $490 \mathrm{lb} / \mathrm{ft}^{3}$.

Sample Problem 9.12

SOLUTION:

- Compute the moments of inertia of each component with respect to the $x y z$ axes.

each cylinder:
$m=\frac{\gamma V}{g}=\frac{\left(490 \mathrm{lb} / \mathrm{ft}^{3}\right)\left(\pi \times 1^{2} \times 3\right) \mathrm{n}^{3}}{\left(1728 \mathrm{in}^{3} / \mathrm{ft}^{3}\right)\left(32.2 \mathrm{ft} / \mathrm{s}^{2}\right)}$
$m=0.0829 \mathrm{lb} \cdot \mathrm{s}^{2} / \mathrm{ft}$
cylinders ($a=1 \mathrm{in} ., L=3$ in., $\bar{x}=2.5 \mathrm{in} ., \bar{y}=2 \mathrm{in}$.$) :$

$$
\begin{aligned}
I_{x} & =\frac{1}{2} m a^{2}+m \bar{y}^{2} \\
& =\frac{1}{2}(0.0829)\left(\frac{1}{12}\right)^{2}+(0.0829)\left(\frac{2}{12}\right)^{2} \\
& =2.59 \times 10^{-3} \mathrm{lb} \cdot \mathrm{ft} \cdot \mathrm{~s}^{2} \\
I_{y} & =\frac{1}{12} m\left[3 a^{2}+L^{2}\right]+m \bar{x}^{2} \\
& =\frac{1}{12}(0.0829)\left[3\left(\frac{1}{12}\right)^{2}+\left(\frac{3}{12}\right)^{2}\right]+(0.0829)\left(\frac{2.5}{12}\right)^{2} \\
& =4.17 \times 10^{-3} \mathrm{lb} \cdot \mathrm{ft} \cdot \mathrm{~s}^{2}
\end{aligned}
$$

$$
\begin{aligned}
I_{y} & =\frac{1}{12} m\left[3 a^{2}+L^{2}\right]+m\left[\bar{x}^{2}+\bar{y}^{2}\right] \\
& =\frac{1}{12}(0.0829)\left[3\left(\frac{1}{12}\right)^{2}+\left(\frac{3}{12}\right)^{2}\right]+(0.0829)\left[\left(\frac{2.5}{12}\right)^{2}+\left(\frac{2}{12}\right)^{2}\right] \\
& =6.48 \times 10^{-3} \mathrm{lb} \cdot \mathrm{ft} \cdot \mathrm{~s}^{2}
\end{aligned}
$$

Sample Problem 9.12

$\operatorname{prism}(a=2$ in., $b=6$ in., $c=2$ in.):

$$
\begin{aligned}
I_{x} & \left.=I_{z}=\frac{1}{12} m\left[b^{2}+c^{2}\right]=\frac{1}{12}(0.211)\left(\frac{6}{12}\right)^{2}+\left(\frac{2}{12}\right)^{2}\right] \\
& =4.88 \times 10^{-3} \mathrm{lb} \cdot \mathrm{ft} \cdot \mathrm{~s}^{2} \\
I_{y} & \left.=\frac{1}{12} m\left[c^{2}+a^{2}\right]=\frac{1}{12}(0.211)\left(\frac{2}{12}\right)^{2}+\left(\frac{2}{12}\right)^{2}\right] \\
& =0.977 \times 10^{-3} \mathrm{lb} \cdot \mathrm{ft} \cdot \mathrm{~s}^{2}
\end{aligned}
$$

- Add the moments of inertia from the components to determine the total moments of inertia.
prism:
$m=\frac{\gamma V}{g}=\frac{\left(490 \mathrm{lb} / \mathrm{ft}^{3}\right)(2 \times 2 \times 6) \mathrm{in}^{3}}{\left(1728 \mathrm{in}^{3} / \mathrm{ft}^{3}\right)\left(32.2 \mathrm{ft} / \mathrm{s}^{2}\right)}$
$m=0.211 \mathrm{lb} \cdot \mathrm{s}^{2} / \mathrm{ft}$

$$
\begin{gathered}
I_{x}=4.88 \times 10^{-3}+2\left(2.59 \times 10^{-3}\right) \\
I_{x}=10.06 \times 10^{-3} \mathrm{lb} \cdot \mathrm{ft} \cdot \mathrm{~s}^{2} \\
I_{y}=0.977 \times 10^{-3}+2\left(4.17 \times 10^{-3}\right) \\
I_{y}=9.32 \times 10^{-3} \mathrm{lb} \cdot \mathrm{ft} \cdot \mathrm{~s}^{2} \\
I_{z}=4.88 \times 10^{-3}+2\left(6.48 \times 10^{-3}\right) \\
I_{z}=17.84 \times 10^{-3} \mathrm{lb} \cdot \mathrm{ft} \cdot \mathrm{~s}^{2}
\end{gathered}
$$

Moment of Inertia With Respect to an Arbitrary Axis

- $I_{O L}=$ moment of inertia with respect to axis $O L$

$$
I_{O L}=\int p^{2} d m=\int|\vec{\lambda} \times \vec{r}|^{2} d m
$$

- Expressing $\vec{\lambda}$ and \vec{r} in terms of the vector components and expanding yields

$$
\begin{aligned}
I_{O L}= & I_{x} \lambda_{x}^{2}+I_{y} \lambda_{y}^{2}+I_{z} \lambda_{z}^{2} \\
& -2 I_{x y} \lambda_{x} \lambda_{y}-2 I_{y z} \lambda_{y} \lambda_{z}-2 I_{z x} \lambda_{z} \lambda_{x}
\end{aligned}
$$

- The definition of the mass products of inertia of a mass is an extension of the definition of product of inertia of an area

$$
\begin{aligned}
I_{x y} & =\int x y d m=\bar{I}_{x^{\prime} y^{\prime}}+m \overline{x y} \\
I_{y z} & =\int y z d m=\bar{I}_{y^{\prime} z^{\prime}}+m \overline{y z} \\
I_{z x} & =\int z x d m=\bar{I}_{z^{\prime} x^{\prime}}+m \overline{z x}
\end{aligned}
$$

Ellipsoid of Inertia. Principal Axes of Inertia of a Mass

- Assume the moment of inertia of a body has been computed for a large number of axes $O L$ and that point Q is plotted on each axis at a distance $O Q=1 / \sqrt{I_{O L}}$
- The locus of points Q forms a surface known as the ellipsoid of inertia which defines the moment of inertia of the body for any axis through O.
- $x^{\prime}, y^{\prime}, z^{\prime}$ axes may be chosen which are the principal axes of inertia for which the products of inertia are zero and the moments of inertia are the principal moments of inertia.

