Chapter 12 Fluid Dynamics

Equation of Continuity

The mass flow rate ($\rho \mathrm{Av}$) has the same value at every position along a continuous tube. For two positions along such a tube

For incompressible fluids,

$$
\rho_{1} A_{1} v_{1}=\rho_{2} A_{2} v_{2}
$$

$$
A_{1} v_{1}=A_{2} v_{2}
$$

Bernoulli's Equation

In the steady flow of a nonviscous, incompressible fluid of density ρ, the pressure P, the fluid speed v, and the elevation y at any two points (1 and 2) are related. Consider a streamline connecting the two locations, the work done per unit time is

$$
d W=P_{1} d V-P_{2} d V
$$

which is equal to the change in total mechanical energy

$$
\begin{aligned}
& d W=\frac{1}{2}(\rho d V) v_{2}^{2}+(\rho d V) g y_{2}-\frac{1}{2}(\rho d V) v_{1}^{2}-(\rho d V) g y_{1} \\
& P_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g y_{1}=P_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g y_{2}=\text { const } .
\end{aligned}
$$

Toricelli's Law

$P_{a t}+\frac{1}{2} \rho \cdot 0^{2}+\rho g \cdot h=P_{a t}+\frac{1}{2} \rho v_{2}^{2}+\rho g \cdot 0$
$v_{2}=\sqrt{2 g y_{1}}$

The water tank is open to the
 atmosphere and has two holes in it, one 0.80 m and one 3.6 m above the floor on which the tank rests. If the two streams of water strike the floor in the same place, what is the depth of water in the tank?

Viscous Flow

In viscous fluid, there is "friction" between regions with different velocity. As a result, a pressure difference needs to be present to maintain a steady flow of fluid. For a cylindrical pipe, the coefficient of viscosity η is the ratio between the pressure difference and $v L / A$, where v is the average fluid velocity

$$
P_{1}-P_{2}=8 \pi \eta \frac{v L}{A}
$$

conventional unit: 1 poise $=0.1 \mathrm{~N} \mathrm{~s} / \mathrm{m}^{2}$
Volume flow rate

$$
\frac{d V}{d t}=v A=\frac{\left(P_{1}-P_{2}\right) A^{2}}{8 \pi \eta L}=\frac{\left(P_{1}-P_{2}\right) \pi r^{4}}{8 \eta L}
$$

Poiseuille's Equation

Example Problems

21. Every few years, winds in Boulder, Colorado, attain sustained speeds of $45.0 \mathrm{~m} / \mathrm{s}$. Approximately what is the force due to the Bernoulli effect on a roof having an area of $220 \mathrm{~m}^{2}$?

22. A sump pump is draining a flooded basement at the rate of 0.750 L / s, with an output pressure of $3.00 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$. (a) The water enters a hose with a $3.00-\mathrm{cm}$ inside diameter and rises 2.50 m above the pump. What is its pressure at this point? (b) The hose goes over the foundation wall, losing 0.500 m in height, and widens to 4.00 cm in diameter. What is the pressure now? You may neglect frictional losses in both parts of the problem.

Chapter 12 Summary

- Equation of continuity: $\quad \rho_{1} A_{1} v_{1}=\rho_{2} A_{2} v_{2}$
- Bernoulli's equation:

$$
P_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g y_{1}=P_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g y_{2}
$$

- A pressure difference is required to keep a viscous fluid moving:

$$
\frac{\Delta V}{\Delta t}=\frac{\left(P_{1}-P_{2}\right) \pi r^{4}}{8 \eta L}
$$

