## Chap. 15, Thermodynamics

#### Work in Thermodynamic Processes

Mechanical work done on a system is

 $W = -P \Delta V$ 

For a gas, the work done can be determined from a PV diagram.



# **First Law of Thermodynamics**

### **First Law of Thermodynamics**

The internal energy of a system changes from an initial value U<sub>i</sub> to a final value of U<sub>f</sub> due to heat Q and work W:

$$\Delta \mathbf{U} = \mathbf{U}_{\mathbf{f}} - \mathbf{U}_{\mathbf{i}} = \mathbf{Q} + \mathbf{W}$$

The internal energy depends only on the state of a system, not on the method (path) by which the system arrives at a given state.

For an isolated system, for a cyclic process, or for an isothermal (constant temperature) process,





## **Ideal Gas**

monatomic molecules 
$$U = \frac{3}{2} nRT$$
  
 $\Delta U = \frac{3}{2} nR \Delta T$   
molar specific heat at  
constant volume  $C_v \equiv \frac{3}{2} R$ 

$$\Delta U = nC_v \Delta T$$

## **Ideal Gas At Constant Pressure**



## **Adiabatic Process**

An adiabatic process is one which involves no heat flow with the outside environment.



# **Adiabatic Process**

| Step #1:<br>Isobaric | P, V, T (= P V / nR)                       | $\Rightarrow P, V + \Delta V, T + \Delta T_1$         |
|----------------------|--------------------------------------------|-------------------------------------------------------|
|                      | $\Delta U_1 = nC_p \Delta T_1 - P\Delta V$ | $nC_{v}\Delta T_{1} = nC_{p}\Delta T_{1} - P\Delta V$ |
|                      | $P\Delta V = n(\gamma)$                    | $(-1)C_{v}\Delta T_{1}$                               |

**Step 2: Lose the same Heat at Constant Volume**  $P, V + \Delta V, T + \Delta T_1 \implies P + \Delta P, V + \Delta V, T + \Delta T_1 + \Delta T_2$ 

### **Reversible and Irreversible Processes**

A reversible process is one in which every state along some path is an equilibrium state. The system can be returned to its initial conditions along the same path.

A process that does not satisfy these requirements is irreversible.

### **Heat Engines**



## **Carnot Engine**



## **Example Problem**

58. One mole of an ideal gas is taken through the cycle shown in Figure P12.58. At point A, the pressure, volume, and temperature are  $P_0$ ,  $V_0$ , and  $T_0$ . In terms of R and  $T_0$ , find (a) the total energy entering the system by heat per cycle, (b) the total energy leaving the system by heat per cycle,

(c) the efficiency of an engine operating in this cycle, and

(d) the efficiency of an engine operating in a Carnot cycle between the temperature extremes for this process. (Hint: Recall that work done on the gas is the negative of the area under a PV curve.)



### **Entropy And Disorder**

The change in entropy for reversible processes is  $\Delta S = Q/T$  with T expressed in Kelvin scale. Entropy is a measure of the "disorder" of a system. It is related to the number of possible ways the total energy of a system can be subdivided into its individual components.

$$S = k_B \ln W$$

### Another version of the second law of thermodynamics

The total entropy of the universe does not change when a reversible process occurs ( $\Delta S_{universe} = 0$ ) and increases when an irreversible process occurs ( $\Delta S_{universe} > 0$ ).

### **Third Law of Thermodynamics**

### **Third Law of Thermodynamics**

It is not possible to lower the temperature of any system to absolute zero in a finite number of steps.

### Wise Guy's Interpretation of Thermodynamics Laws

Zeroth Law: Everyone is treated the same way. No exceptions. First Law: You can't win. Second Law: You must lose. Third Law: You can't get out of the game.