Chapter 16: Oscillatory Motion and Waves
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Displacement = x

Hooke’s Law (revisited)

F=-kx

Tthe elastic potential energy of a stretched or
compressed spring is

PE =kx2/2 4————— Note: To consider the potential energy
of the spring, we CANNOT arbitrarily

define where x=0 is.

elastic

Simple Harmonic Motion (SHM)

When the restoring force has the .
mathematical form given by F = -kx K.k
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Period, Frequency, Wave Length, Speed

Periodic Motion Period (T): time required
v for one complete cycle of
periodic motion
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We already knew an example of SHM:

> = Uniform Circular Motion!
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F, =mv’/R=me’R

F, =-mo’ Rcosd =—(Mo’) X

Ky = Mo’
If we analyze the x-direction motion of an object in uniform circular
motion, we see that the x-component of centripetal force on the object is
proportional to its displacement in the x-direction (and with a negative
sign). In other words, the x-direction force experienced by an object in
uniform circular motion (®) is identical to an object bound to the end of
a spring, with a spring constant of m?, in a simple harmonic oscillation.
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Kinematics of Simple Harmonic Motion

Since the x-component of the force is identical, both motions
(in the x-direction) must be identical. To describe the
motion of an object on a spring, we only need to analyze the
1-D projection of a object in uniform circular motion.

X = Acos@ = Acos(wt+6,)
V, = —Awsin@ = - Awsin(wt +06,)
a, = —Aw’ cosfd = — Aw’ cos(wt+6,)

Plugging these expressions into our original
equation of F=-k x=m a, we identify that
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Note: Frequency of SHM is independent of amplitude.

SHM compared with

“Recoil Time” of a spring . . .
uniform circular motion

More about Simple Harmonic Motion

Conservative Force: Total mechanical energy is conserved:

Energy
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The Simple Pendulum

The gravitational force acting on a
mass m on a string with length of L,
when it is displaced a small distance |
s from its equilibrium position, has 1o
an approximate horizontal force Leosn ;
component of '

F,=-(mg/lL)s , > \

{a) (1]

acting in a direction to push the
mass back toward the equilibrium
position. So the force acting on the
pendulum is approximately the same
as that from a spring with a spring
constant of k = (mg/L).

Pendulum Cf. Spring-Mass

Motion of The Pendulum

Since the restoring force on the pendulum
is approximately proportional to the |
displacement of the pendulum, the

resultant motion is approximately “simple L
harmonic”. The angular frequency of the
pendulum motion is

w=,=
L

T is independent of m! Pendulum Motion



SHM Problems

18. A diver on a diving board is undergoing simple harmonic
motion. Her mass is 55.0 kg and the period of her motion is
0.800 s. The next diver is a male whose period of simple
harmonic oscillation is 1.05 s. What is his mass if the mass of
the board is negligible?

38. A novelty clock has a 0.0100-kg mass object bouncing on a
spring that has a force constant of 1.25 N/m. What is the
maximum velocity of the object if the object bounces 3.00 cm
above and below its equilibrium position? (b) How many joules
of kinetic energy does the object have at its maximum
velocity?

Damped Oscillations

Assume that for a simple harmonic motion, the damping (force) can be
represented by E — _py

It can be shown that the oscillation amplitude decays with time for “under-
damped” systems

A(t): AO e—bt/2IT|
x=A, e cos(at +6,)

Damped Oscillations
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Critical Damping: ﬂ=a) =\m
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Driven Oscillations

Small damping

Amplitude

Large damping

fo

Frequency

Without damping, the amplitude will
“diverge” at the natural angular

frequency of the system @, =+k/m

Suppose a periodic driving force acts on
a simple harmonic oscillator

I:drive = C Cos(wdrt)

After some “transient period”, a steady
state will be reached

X = Acos(w,t+6,)

With small damping, a resonance takes
place near the natural frequency, at

2 _ 2 2 2
0, =0, —b~/2m

Waves

Waves:

A wave is a traveling disturbance. It carries energy but

involves no net transportation of material.

A transverse wave has

disturbance perpendicular to the
direction of the wave.

A longitudinal wave has
disturbance parallel to the
direction of the wave.



Periodic Waves

Vertical Wavelength =4
position T
Slinky. - i
\/ W Distance
Undisturbed
position
() At a particular time

Vertical
position
of one Period = T
point on

the A{‘
Slinky . }

t=0 t=t

wavelength (A)  —

speed (v=A/T=Af)

(b) At a particular location

A sinusoidal wave is one whose disturbance as a function of
time (or position) can be described by a sine or cosine function.
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Harmonic (Sinusoidal) Waves
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x=Af4

A sinusoidal wave is one whose
disturbance as a function of time (or
position) can be described by a sine or

2 t
y(X,t)= ACOS(T{X — X, — /1?})

y(x,t)= Acos(kx — wt)



assume sinusoidal

Speed of Wave on a String

What is the speed of a transverse wave traveling on a string with a
linear density of mass of m/L and a tension of F ? Assume the
amplitude to be small, namely, A << A. What law(s) do we use to
determine the speed of wave on a string?

V\/“

By considering a small s%on of the string and drawing a free-body
diagram, we find that the net force on the small section is not zero,
because the tensions on the two ends of the small section are pointed at
slightly different directions. Therefore, we can determine the speed of
wave by using Newton’s Second Law!

Speed of Wave on a String

y(cm)
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Interference of Waves

The Principle of Linear Superposition

When two or more waves are present simultaneously at the same place, the
resultant disturbance is the sum of the disturbances from the individual

waves.
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Reflection of Waves

Incident

pulse T
. N
. Incident »
*  When a traveling puse = \u @
— ,f

wave reaches a W ‘A—P

boundary, all or ; .

part of it is reflected | J (b)
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Standing Waves

Standing wave is due to the interference between two identical waves traveling in
opposite directions. The fixed end point of a string acts as a reflection boundary,
reversing the direction and the sign of displacement of the incoming wave. Nodes
in a standing wave are separated by A/2. (not A !) Note that the amplitude
of the lobes can exceed the amplitude of the driving source.
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Interference of Waves
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Only coherent sources can produce interference effect. For two wave sources
vibrating in phase, a difference in path lengths that is zero or an integer
number {1,2,3,..} of wavelengths leads to constructive interference; a
difference in path lengths that is a half-integer number {0.5, 1.5, 2.5, ...} of
wavelengths leads to destructive interference.

Beats
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Two oscillations close in frequency leads to periods of approximate constructive
interference and destructive interference. The volume of the sound appears to flip
between “large” and “small”, forming “beats”.

What is the beat frequency?

Suppose at time t=0, the two primary sounds are “in phase” (maximum). We

want to know the next time when the two sounds are again “in phase”. The time
elapsed, T, is then obviously the “period” of the beats. This happens when the
sound with the higher frequency (f;) has gone one full cycle more than the slower
wave (f,). Beats
f1 Tbeat - f2 Tbeat =1

— -1 —
fbeat = f1 - f2
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Beats
y, = Acos(24ft) Yy, = Acos(2xf,t)
Yoo = Acos(27f,t) + Acos(24f,t)

= Acos[27(“5% +153)t]+ Acos[ 27 (25 — 15t

f :|f1_f2|

beat

Power and Intensity of Waves

Intensity of a wave, I, is the power, P, per area that passes
perpendicularly through a surface:

Sound source al

center of sphere

I=P/A 3

If a source emits waves uniformly in all
directions, the intensity at distance r
away from the source is

1=P/(4nr?)

Therefore, the ratio of intensities at two
spherical surfaces is

L
-5 = 3
I, r

At very large distances from any source, or for waves traveling in confined
channels, wave fronts are almost parallel. This is known as a plane wave.
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Examples

58. The middle-C hammer of a piano hits two strings, producing
beats of 1.50 Hz. One of the strings is tuned to 260.00 Hz. What
frequencies could the other string have?

64. The low-frequency speaker of a stereo set has a surface area
of 0.05 m2 and produces 1W of acoustical power. What is the
intensity at the speaker? If the speaker projects sound uniformly
in all directions, at what distance from the speaker is the
intensity 0.1 W/m2?

Chapter 16 Summary

* Period of a mass on a spring: T = 27;\ %
R . . . . . o i | 2
Total energy in simple harmonic motion: E = ka
: : [L
* Period of a simple pendulum: T = 2.—:\! —
&
« Wave speed: D= /\f
» Speed of a wave on a string: D= E
\I
P M
* Intensity of sound: I'= E

* Resonance occurs when the driving frequency is close to the
natural frequency of the system
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Summary

* When two or more waves occupy the same location, their
displacements are added. Constructive and destructive.

Standing waves on a string:  f, = nf; = n(v/2L)
Ay = Ay/n = 2L/n

* Beat frequency: fbeat = |f1 - f2|
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