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Chapter 16: Oscillatory Motion and Waves

Tthe elastic potential energy of a stretched or 
compressed spring is

PEelastic = kx2/2 Note: To consider the potential energy 
of the spring, we CANNOT arbitrarily 
define where x=0 is.

Spring-blockHooke’s Law (revisited)

F = - k x

Simple Harmonic Motion (SHM)

When the restoring force has the 
mathematical form given by F = -kx 
(Hooke’s Law), the resultant 
periodic motion is referred to as 
“simple harmonic motion.”

Position versus time in SHM can be 
represented by a sinusoidal function
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Period (T): time required 
for one complete cycle of 
periodic motion

Frequency 

unit: 1/s (=Hz)

amplitude (A)

Period, Frequency, Wave Length, Speed

Periodic Motion
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We already knew an example of SHM:
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Uniform Circular Motion!

If we analyze the x-direction motion of an object in uniform circular 
motion, we see that the x-component of centripetal force on the object is 
proportional to its displacement in the x-direction (and with a negative 
sign).  In other words, the x-direction force experienced by an object in 

uniform circular motion () is identical to an object bound to the end of 
a spring, with a spring constant of m2, in a simple harmonic oscillation. 
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Kinematics of Simple Harmonic Motion

Since the x-component of the force is identical, both motions 
(in the x-direction) must be identical.  To describe the 
motion of an object on a spring, we only need to analyze the 
1-D projection of a object in uniform circular motion.
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)cos(cos 0
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Plugging these expressions into our original 
equation of   F = -k x = m a , we identify that
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Note: Frequency of SHM is independent of amplitude.

SHM compared with 
uniform circular motion

“Recoil Time” of a spring

More about Simple Harmonic Motion
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Conservative Force: Total mechanical energy is conserved:
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The Simple Pendulum

The gravitational force acting on a 
mass m on a string with length of L, 
when it is displaced a small distance 
s from its equilibrium position, has 
an approximate horizontal force 
component of

Fh = - ( mg/L ) s  ,

acting in a direction to push the 
mass back toward the equilibrium 
position.  So the force acting on the 
pendulum is approximately the same 
as that from a spring with a spring 
constant of k = (mg/L).

Pendulum Cf. Spring-Mass

Motion of The Pendulum

g

L
T 




2
2



L

g


Since the restoring force on the pendulum 
is approximately proportional to the 
displacement of the pendulum, the 
resultant motion is approximately “simple 
harmonic”.  The angular frequency of the 
pendulum motion is 

T is independent of m! Pendulum Motion
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SHM Problems

18. A diver on a diving board is undergoing simple harmonic 
motion. Her mass is 55.0 kg and the period of her motion is 
0.800 s. The next diver is a male whose period of simple 
harmonic oscillation is 1.05 s. What is his mass if the mass of 
the board is negligible?

38. A novelty clock has a 0.0100-kg mass object bouncing on a 
spring that has a force constant of 1.25 N/m. What is the 
maximum velocity of the object if the object bounces 3.00 cm 
above and below its equilibrium position? (b) How many joules 
of kinetic energy does the object have at its maximum 
velocity?

Critical Damping: 

Damped Oscillations

Assume that for a simple harmonic motion, the damping (force) can be 
represented by 

It can be shown that the oscillation amplitude decays with time for “under-
damped” systems

Damped Oscillations
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Without damping, the amplitude will 
“diverge” at the natural angular 
frequency of the system

Driven Oscillations

)cos( cdrtAx  

Suppose a periodic driving force acts on 
a simple harmonic oscillator

After some “transient period”, a steady 
state will be reached

)cos( tCF drdrive 

mk /0 

With small damping, a resonance takes 
place near the natural frequency, at 
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Waves:    A wave is a traveling disturbance.  It carries energy but 
involves no net transportation of material.

Waves

A transverse wave has 
disturbance perpendicular to the 
direction of the wave.

A longitudinal wave has 
disturbance parallel to the 
direction of the wave.
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wavelength ()

speed ( v = /T = f )

Periodic Waves

A sinusoidal wave is one whose disturbance as a function of 
time (or position) can be described by a sine or cosine function.  

Harmonic (Sinusoidal) Waves

A sinusoidal wave is one whose 
disturbance as a function of time (or 
position) can be described by a sine or 
cosine function.  
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By considering a small section of the string and drawing a free-body 
diagram, we find that the net force on the small section is not zero,  
because the tensions on the two ends of the small section are pointed at 
slightly different directions. Therefore, we can determine the speed of 
wave by using Newton’s Second Law! 

Speed of Wave on a String

What is the speed of a transverse wave traveling on a string with a 
linear density of mass of  m/L and a tension of F ?  Assume the 
amplitude to be small, namely, A << .  What law(s) do we use to 
determine the speed of wave on a string?

Speed of Wave on a String
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time
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Interference of Waves

The Principle of Linear Superposition
When two or more waves are present simultaneously at the same place, the 
resultant disturbance is the sum of the disturbances from the individual 
waves.

Linear Superposition
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Reflection of Waves

• When a traveling 
wave reaches a 
boundary, all or 
part of it is reflected

• When reflected 
from a free end, the 
pulse is not inverted

• When it is reflected 
from a fixed end, 
the wave is inverted

Fixed End

Free End

Standing Waves

Standing wave is due to the interference between two identical waves traveling in 
opposite directions.   The fixed end point of a string acts as a reflection boundary, 
reversing the direction and the sign of displacement of the incoming wave.  Nodes 

in a standing wave are separated by /2.  (not  !) Note that the amplitude 
of the lobes can exceed the amplitude of the driving source.  

Natural frequencies: 

f1 = v/(2L)   fundamental freq.  
f2 = 2 f1 ,
f3 = 3 f1  ,  
f4 = 4 f1 …..

Node             Antinode

Standing Waves
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Interference of Waves

Only coherent sources can produce interference effect.  For two wave sources 
vibrating in phase, a difference in path lengths that is zero or an integer 
number {1,2,3,..} of wavelengths leads to constructive interference; a 
difference in path lengths that is a half-integer number {0.5, 1.5, 2.5, ...} of 
wavelengths leads to destructive interference.

Beats

Two oscillations close in frequency leads to periods of approximate constructive 
interference and destructive interference.  The volume of the sound appears to flip 
between “large” and “small”, forming “beats”.

Beats

What is the beat frequency?

Suppose at time t=0, the two primary sounds are “in phase” (maximum).  We 
want to know the next time when the two sounds are again “in phase”.  The time 
elapsed, Tbeat, is then obviously the “period” of the beats.  This happens when the 
sound with the higher frequency (f1) has gone one full cycle more than the slower 
wave (f2).

f1 Tbeat - f2 Tbeat = 1
Tbeat = ( f1 - f2 )-1

fbeat =  f1 - f2

|| 21 fffbeat 
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Beats
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Power and Intensity of Waves

If a source emits waves uniformly in all 
directions, the intensity at distance r 
away from the source is

I = P / (4r2)

Therefore, the ratio of intensities at two 
spherical surfaces is

I1 r2
2

I2 r1
2=

At very large distances from any source, or for waves traveling in confined 
channels, wave fronts are almost parallel.  This is known as a plane wave.

Intensity of a wave, I,  is the power, P, per area that passes 
perpendicularly through a surface:

I = P / A
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Examples

58. The middle-C hammer of a piano hits two strings, producing 
beats of 1.50 Hz. One of the strings is tuned to 260.00 Hz. What 
frequencies could the other string have?

64. The low-frequency speaker of a stereo set has a surface area 
of 0.05 m2 and produces 1W of acoustical power. What is the 
intensity at the speaker? If the speaker projects sound uniformly 
in all directions, at what distance from the speaker is the 
intensity 0.1 W/m2?

• Period of a mass on a spring:

• Total energy in simple harmonic motion:

• Period of a simple pendulum:

• Resonance occurs when the driving frequency is close to the 
natural frequency of the system

Chapter 16 Summary

• Wave speed:

• Speed of a wave on a string:

• Intensity of sound:
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• When two or more waves occupy the same location, their 
displacements are added.  Constructive and destructive.

Summary

• Beat frequency:

Standing waves on a string:


