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Ch. 5 Distributed Forces:  Centroids and CG

5 - 1

• The earth exerts a gravitational force on each of the particles 
forming a body.  These forces can be replaced by a single 
equivalent force equal to the weight of the body and applied 
at the center of gravity for the body.

• The centroid of an area is analogous to the center of 
gravity of a body; it is the “center of area.”  The concept of 
the first moment of an area is used to locate the centroid.

• Determination of the area of a surface of revolution and 
the volume of a body of revolution are accomplished 
with the Theorems of Pappus-Guldinus.
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Center of Gravity of a 2D Body

• Center of gravity of a plate
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• Center of gravity of a wire
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Centroids and First Moments of Areas and Lines
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: specific weight

t: thickness

a: cross-section
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Determination of Centroids by Integration
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• Double integration to find the first moment 

may be avoided by defining dA as a thin 
rectangle or strip.
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Sample Problem 5.4

Determine by direct integration the 
location of the centroid of a parabolic 
spandrel.

• Evaluate the total area.
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Sample Problem 5.4
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First Moments of Areas and Lines
• An area is symmetric with respect to an axis BB’

if for every point P there exists a point P’ such 
that PP’ is perpendicular to BB’ and is divided 
into two equal parts by BB’.

• The first moment of an area with respect to a 
line of symmetry is zero.

• If an area possesses a line of symmetry, its 
centroid lies on that axis

• If an area possesses two lines of symmetry, its 
centroid lies at their intersection.

• An area is symmetric with respect to a center O
if for every element dA at (x,y) there exists an 
area dA’ of equal area at (-x,-y).  

• The centroid of the area coincides with the 
center of symmetry.



© 2013The McGraw-Hill Companies, Inc. All rights reserved. 

Centroids of Common Shapes of Areas
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Centroids of Common Shapes of Lines
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Problem 5.30

The homogeneous wire ABC is bent 
into a semicircular arc and a straight 
section as shown and is attached to a 
hinge at A. Determine the value of  for 
which the wire is in equilibrium for the 
indicated position.
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Composite Plates and Areas

• Composite plates
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Sample Problem 5.1

For the plane area shown, determine 
the first moments with respect to the 
x and y axes and the location of the 
centroid.

SOLUTION:

• Divide the area into a triangle, rectangle, 
and semicircle with a circular cutout.

• Compute the coordinates of the area 
centroid by dividing the first moments by 
the total area.

• Find the total area and first moments of 
the triangle, rectangle, and semicircle.  
Subtract the area and first moment of the 
circular cutout.

• Calculate the first moments of each area 
with respect to the axes.
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Sample Problem 5.1
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Q• Find the total area and first moments of the 
triangle, rectangle, and semicircle.  Subtract the 
area and first moment of the circular cutout.
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Sample Problem 5.1

5 - 14
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• Compute the coordinates of the area 
centroid by dividing the first moments by 
the total area.
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Theorems of Pappus-Guldinus

THEOREM I:

Area of a surface of revolution is 
equal to the length of the generating 
curve times the distance traveled by 
the centroid through the rotation.

LyA 2

• Surface of revolution is generated by 
rotating a plane curve about a fixed axis.
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Theorems of Pappus-Guldinus

• Body of revolution is generated by rotating a plane 
area about a fixed axis.

THEOREM II:

Volume of a body of revolution is equal 
to the generating area  times the 
distance traveled by the centroid 
through the rotation.

AyV 2
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Sample Problem 5.7

The outside diameter of a pulley is 0.8 
m, and the cross section of its rim is as 
shown.  Knowing that the pulley is 
made of steel and that the density of 
steel is 
determine the mass and weight of the 
rim.

33 mkg 1085.7 

m  V  7.85103 kg m3 7.65106mm3 109m3 /mm3 
kg 0.60mW  mg  60.0 kg 9.81 m s2  N 589W
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Problem 5.64

Determine the capacity, in 
liters, of the punch bowl shown 
if R = 250 mm.
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Distributed Loads on Beams

• A distributed load is represented by plotting the load 
per unit length, w (N/m) .  The total load is equal to 
the area under the load curve.
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• A distributed load can be replace by a concentrated 
load with a magnitude equal to the area under the 
load curve and a line of action passing through the 
area centroid.
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Sample Problem 5.9

A beam supports a distributed load as 
shown.  Determine the equivalent 
concentrated load and the reactions at 
the supports.

m5.3X

kN 0.18F

kN 5.10yB
0xB kN 5.7yA
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Center of Gravity of a 3D Body: Centroid of a Volume

• Center of gravity G
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• For homogeneous bodies,
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Centroids of Common 3D Shapes
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Composite 3D Bodies

• Moment of the total weight concentrated at the 
center of gravity G is equal to the sum of the 
moments of the weights of the component parts.

  WzWZWyWYWxWX

• For homogeneous bodies,

  VzVZVyVYVxVX
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Sample Problem 5.12
Modeling:
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Sample Problem 5.12

Analysis:
   4 33.048 in 5.286 in  X xV V

0.577 in.X

   4 35.047 in 5.286 in   Y yV V

0.955 in. Y

   4 38.555 in 5.286 in  Z zV V

1.618 in.Z
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Problem 5.110

A wastebasket, designed to fit in the 
corner of a room, is 16 in. high and has 
a base in the shape of a quarter circle 
of radius 10 in. Locate the center of 
gravity of the wastebasket, knowing 
that it is made of sheet metal of 
uniform thickness.
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Problem 5. 41                         5.15

Determine by direct integration 
the centroid of the area shown. 
Express your answer in terms of 
a and b.

Locate the centroid of the plane 
area, which consists of a quarter-
ellipse and a triangle. 


