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Chapter 9, Distributed Forces: Moments of Inertia
• Previously considered distributed forces which were proportional to the 

area or volume over which they act.  
- The resultant was obtained by summing or integrating over the 

areas or volumes.
- The moment of the resultant about any axis was determined by 

computing the first moments of the areas or volumes about that 
axis.

• Will now consider forces which are proportional to the area or volume 
over which they act but also vary linearly with distance from a given axis.

- It will be shown that the magnitude of the resultant depends on the 
first moment of the force distribution with respect to the axis.

- The point of application of the resultant depends on the second 
moment of the distribution with respect to the axis.

• Current chapter will present methods for computing the moments and 
products of inertia for areas and masses.

Moment of Inertia of an Area
• Consider distributed forces whose magnitudes are 

proportional to the elemental areas on which they 
act and also vary linearly with the distance of 
from a given axis.

F



A

A

• Example:  Consider the net hydrostatic force on a 
submerged circular gate.

F  pA

The pressure, p, linearly increases with depth

p y, so

F yA, and the resultant force is

R F
all A
  y dA , while the moment produced is

Mx  y 2dA
• The integral             is already familiar from our study of centroids.

• The integral               is one subject of this chapter, and is known as the area 
moment of inertia, or more precisely, the second moment of the area.

y dA

y 2 dA
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Moment of Inertia of an Area by Integration
• Second moments or moments of inertia of 

an area with respect to the x and y axes,

  dAxIdAyI yx
22

• Evaluation of the integrals is simplified by 
choosing dto be a thin strip parallel to 
one of the coordinate axes.

• For a rectangular area,

3
3
1

0

22 bhbdyydAyI
h

x  

• The formula for rectangular areas may also 
be applied to strips parallel to the axes,

dxyxdAxdIdxydI yx
223

3
1 

Polar Moment of Inertia

• The polar moment of inertia is an important 
parameter in problems involving torsion of 
cylindrical shafts and rotations of slabs.

J0  r 2dA

• The polar moment of inertia is related to the 
rectangular moments of inertia,

J0  r 2dA  x 2  y 2  dA  x 2dA  y 2dA

 Iy  Ix
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Radius of Gyration of an Area
• Consider area A with moment of inertia 

Ix.  Imagine that the area is 
concentrated in a thin strip parallel to 
the x axis with equivalent Ix.

A

I
kAkI x

xxx  2

kx = radius of gyration with respect 
to the x axis

• Similarly,

A

J
kAkJ

A

I
kAkI

O
OOO

y
yyy





2

2

222
yxO kkk 

Sample Problem 9.1

Determine the moment of 
inertia of a triangle with respect 
to its base.

SOLUTION:

• A differential strip parallel to the x axis is chosen for 
dA.

dIx  y 2dA dA  l dy

• For similar triangles,

l

b
 h  y

h
l  b

h  y

h
dA  b

h  y

h
dy

• Integrating dIx from y = 0 to y = h,

Ix  y 2dA  y 2b
h  y

h
dy

0

h

  b

h
hy 2  y 3 dy

0

h



 b

h
h

y 3

3
 y 4

4











0

h

12

3bh
I x

Could a vertical strip have been 
chosen for the calculation?  
What is the disadvantage to that 
choice?  Think, then discuss 
with a neighbor.
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Sample Problem 9.2

a) Determine the centroidal polar 
moment of inertia of a circular 
area by direct integration.

b) Using the result of part a, 
determine the moment of inertia 
of a circular area with respect to a 
diameter of the area.

SOLUTION:

• An annular differential area element is chosen,

dJ O  u 2dA dA  2 u du

JO  dJ O  u 2 2 u du 
0

r

  2 u 3du
0

r



4

2
rJO




• From symmetry, Ix = Iy,

JO  Ix  Iy  2Ix

2

r 4  2I x

4

4
rII xdiameter




Parallel Axis Theorem

• Consider moment of inertia I of an area A
with respect to the axis AA’

 dAyI 2

• The axis BB’ passes through the area centroid 
and is called a centroidal axis.

 








dAddAyddAy

dAdydAyI

22

22

2

2AdII  parallel axis theorem
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Parallel Axis Theorem

• Moment of inertia IT of a circular area with 
respect to a tangent to the circle,

IT  I  Ad 2  1
4
 r 4   r 2 r 2

 5
4
 r 4

• Moment of inertia of a triangle with respect to a 
centroidal axis,

IA A  I B B  Ad 2

I B B  IA A  Ad 2  1
12

bh3  1
2

bh 1
3

h 2

 1
36

bh3

Moments of Inertia of Composite Areas
• The moment of inertia of a composite area A about a given axis is 

obtained by adding the moments of inertia of  the component areas 
A1, A2, A3, ... , with respect to the same axis.
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Problem 9.13

Determine by direct integration the moment of 
inertia of the shaded area with respect to (a) the x-
axis (b) the y-axis 

Moments of Inertia of Composite Areas
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Sample Problem 9.4

The strength of a W14x38 rolled steel 
beam is increased by attaching a plate 
to its upper flange.  

Determine the moment of inertia and 
radius of gyration with respect to an 
axis which is parallel to the plate and 
passes through the centroid of the 
section.

SOLUTION:

• Determine location of the centroid of 
composite section with respect to a 
coordinate system with origin at the 
centroid of the beam section.

• Apply the parallel axis theorem to 
determine moments of inertia of beam 
section and plate with respect to 
composite section centroidal axis.

• Calculate the radius of gyration from the 
moment of inertia of the composite 
section.

Sample Problem 9.4
SOLUTION:

• Determine location of the centroid of composite section 
with respect to a coordinate system with origin at the 
centroid of the beam section.

12.5095.17

0011.20Section Beam

12.50425.76.75Plate

in ,in. ,in ,Section 32

  AyA

AyyA

in. 792.2
in 17.95

in 12.50
2

3





A

Ay
YAyAY
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Sample Problem 9.4
• Apply the parallel axis theorem to determine moments of 

inertia of beam section and plate with respect to composite 
section centroidal axis.

I x ,beam section  I x  AY 2  385 11.20  2.792 2

 472.3 in4

I x ,plate  I x  Ad 2  1
12

9  3
4 

3
 6.75  7.4252.792 2

145.2 in4

• Calculate the radius of gyration from the moment of inertia 
of the composite section.

2

4

in17.95

in 5.617
 


A

I
k x

x in. 87.5xk

I x  I x ,beam section  I x ,plate  472.3 145.2

4in 618xI

Sample Problem 9.5

Determine the moment of inertia 
of the shaded area with respect to 
the x axis.

SOLUTION:

• Compute the moments of inertia of the 
bounding rectangle and half-circle with 
respect to the x axis.

• The moment of inertia of the shaded area is 
obtained by subtracting the moment of 
inertia of the half-circle from the moment 
of inertia of the rectangle.
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Sample Problem 9.5
SOLUTION:
• Compute the moments of inertia of the bounding 

rectangle and half-circle with respect to the x axis.

Rectangle:

Ix  1
3

bh3  1
3

240 120 138.2106mm4

Half-circle:  
moment of inertia with respect to AA’,

IA A  1
8
r 4  1

8
 90 4  25.76106mm4

  

 
23

2
2
12

2
1

mm1072.12

90

mm 81.8a-120b

mm 2.38
3

904
3
4













rA

r
a

moment of inertia with respect to x’,

I x  IA A  Aa2  25.76106 12.72103 
 7.20106mm4

moment of inertia with respect to x,

Ix  I x  Ab2  7.20106  12.72103 81.8 2

 92.3106mm4

Sample Problem 9.5
• The moment of inertia of the shaded area is obtained by 

subtracting the moment of inertia of the half-circle from 
the moment of inertia of the rectangle.

46 mm109.45 xI

xI  46 mm102.138   46 mm103.92 

Two important things to note:
1. The moments of inertia had to reference the same axis.
2. The parallel axis theorem had to be applied twice to the semicircle. 
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Product of Inertia

• Product of Inertia:

 dAxyI xy

• When the x axis, the y axis, or both are an 
axis of symmetry, the product of inertia is 
zero.

• Parallel axis theorem for products of inertia:

AyxII xyxy 

Principal Axes and Principal Moments of Inertia

Given








dAxyI

dAxIdAyI

xy

yx
22

we wish to determine moments 
and product of inertia with 
respect to new axes x’ and y’.







2cos2sin
2

2sin2cos
22

2sin2cos
22

xy
yx

yx

xy
yxyx

y

xy
yxyx

x

I
II

I

I
IIII

I

I
IIII

I




























• The change of axes yields

• The equations for Ix’ and Ix’y’ are the 
parametric equations for a circle,

 

2

222

22 xy
yxyx

ave

yxavex

I
II

R
II

I

RIII








 





 

• The equations for Iy’ and Ix’y’ lead to the 
same circle.


sincos

sincos

xyy

yxx


Note:
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Principal Axes and Principal Moments of Inertia

 

2

222

22 xy
yxyx

ave

yxavex

I
II

R
II

I

RIII








 





 

• At the points A and B, Ix’y’ = 0  and Ix’ is 
a maximum and minimum, respectively.

RII ave minmax,

yx

xy
m II

I




2
2tan 

• Imax and Imin are the principal moments 
of inertia of the area about O.

• The equation for  m defines two 
angles, 90o apart which correspond to 
the principal axes of the area about O.

Sample Problem 9.6

Determine the product of inertia of 
the right triangle (a) with respect 
to the x and y axes and 
(b) with respect to centroidal axes 
parallel to the x and y axes.

SOLUTION:

• Determine the product of inertia using 
direct integration with the parallel axis 
theorem on vertical differential area strips

• Apply the parallel axis theorem to 
evaluate the product of inertia with respect 
to the centroidal axes.
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Sample Problem 9.6
SOLUTION:

• Determine the product of inertia using direct integration 
with the parallel axis theorem on vertical differential 
area strips

y  h 1 x

b







 dA  y dx  h 1 x

b







dx

x el  x y el  1
2

y  1
2

h 1 x

b









Integrating dIx from x = 0 to x = b,

Ixy  dIxy  x el y eldA  x 1
2 h2 1 x

b









2

dx
0

b



 h2 x

2
 x 2

b
 x 3

2b2









dx

0

b

 h

2
x 2

4
 x 3

3b
 x 4

8b2











0

b

Ixy  1
24

b2h2

Sample Problem 9.6
• Apply the parallel axis theorem to evaluate the 

product of inertia with respect to the centroidal axes.

x  1
3

b y  1
3

h

With the results from part a,

Ixy  I x y  x y A

I x y  1
24

b2h2  1
3

b  1
3

h  1
2

bh 

I x y   1
72

b2h2
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Sample Problem 9.7

For the section shown, the moments of 
inertia with respect to the x and y axes 
are Ix = 10.38 in4 and Iy = 6.97 in4.

Determine (a) the orientation of the 
principal axes of the section about O,
and (b) the values of the principal 
moments of inertia about O.

SOLUTION:

• Compute the product of inertia with 
respect to the xy axes by dividing the 
section into three rectangles and applying 
the parallel axis theorem to each.

• Determine the orientation of the 
principal axes (Eq. 9.25) and the 
principal moments of inertia (Eq. 9. 27). 

Sample Problem 9.7
SOLUTION:

• Compute the product of inertia with respect to the xy axes 
by dividing the section into three rectangles.

56.6

28.375.125.15.1

0005.1

28.375.125.15.1

in,in. ,in. ,in Area,Rectangle 42






 Ayx

III

II

I

Ayxyx

Apply the parallel axis theorem to each rectangle,

    AyxII yxxy

Note that the product of inertia with respect to centroidal 
axes parallel to the xy axes is zero for each rectangle.

4in 56.6  AyxIxy
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Sample Problem 9.7
• Determine the orientation of the principal axes (Eq. 9.25) 

and the principal moments of inertia (Eq. 9. 27). 

4

4

4

in 56.6

in 97.6

in 38.10







xy

y

x

I

I

I

 












255.4 and 4.752

85.3
97.638.10

56.622
2tan

m

yx

xy
m II

I





 7.127  and  7.37 mm 

 2
2

2
2

minmax,

56.6
2

97.638.10

2

97.638.10

22







 













 



 xy

yxyx I
IIII

I

4
min

4
max

in 897.1

in 45.15





II

II

b

a

Mohr’s Circle for Moments and Products of Inertia

2

22 xy
yxyx

ave I
II

R
II

I 






 





• The moments and product of inertia for an area 
are plotted as shown and used to construct Mohr’s 
circle,

• Mohr’s circle may be used to graphically or 
analytically determine the moments and product of 
inertia for any other rectangular axes including the 
principal axes and principal moments and products 
of inertia.
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Sample Problem 9.8

The moments and product of inertia 
with respect to the x and y axes are Ix = 
7.24x106 mm4, Iy = 2.61x106 mm4, and 
Ixy = -2.54x106 mm4.

Using Mohr’s circle, determine (a) the 
principal axes about O, (b) the values of 
the principal moments about O, and (c) 
the values of the moments and product 
of inertia about the x’ and y’ axes

SOLUTION:

• Plot the points (Ix , Ixy) and (Iy ,-Ixy).  
Construct Mohr’s circle based on the 
circle diameter between the points.

• Based on the circle, determine the 
orientation of the principal axes and the 
principal moments of inertia.

• Based on the circle, evaluate the 
moments and product of inertia with 
respect to the x’y’ axes.

Sample Problem 9.8

46

46

46

mm1054.2

mm1061.2

mm1024.7







xy

y

x

I

I

I

SOLUTION:
• Plot the points (Ix , Ixy) and (Iy ,-Ixy).  Construct Mohr’s 

circle based on the circle diameter between the points.

 
 
    4622

46
2
1

46
2
1

mm10437.3

mm10315.2

mm10925.4







DXCDR

IICD

IIIOC

yx

yxave

• Based on the circle, determine the orientation of the 
principal axes and the principal moments of inertia.

 6.472097.12tan mm CD

DX   8.23m

RIOAI ave max
46

max mm1036.8 I

RIOBI ave min
46

min mm1049.1 I
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Sample Problem 9.8

46

46

mm10437.3

mm10925.4





R

IOC ave

• Based on the circle, evaluate the moments and product 
of inertia with respect to the x’y’ axes.

The points X’ and Y’ corresponding to the x’ and y’ axes 
are obtained by rotating CX and CY counterclockwise 
through an angle  2(60o) = 120o.  The angle that CX’
forms with the x’ axes is  = 120o - 47.6o = 72.4o.

o
avey RIYCOCOGI 4.72coscos'  

46mm1089.3 yI

o
avex RIXCOCOFI 4.72coscos'  

46mm1096.5 xI

o
yx RYCXFI 4.72sinsin'  

46mm1028.3 yxI

Moment of Inertia of a Mass
• Angular acceleration about the axis AA’ of the 

small mass m due to the application of a 
couple is proportional to r2m.

r2m = moment of inertia of the 
mass m with respect to the 
axis AA’

• For a body of mass m the resistance to rotation 
about the axis AA’ is

inertiaofmomentmassdmr

mrmrmrI





 2

2
3

2
2

2
1 

• The radius of gyration for a concentrated mass 
with equivalent mass moment of inertia is

m

I
kmkI  2
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Moment of Inertia of a Mass

• Moment of inertia with respect to the y coordinate 
axis is

Iy  r 2dm  z 2  x 2 dm

• Similarly, for the moment of inertia with respect to 
the x and z axes,

Ix  y 2  z 2 dm

Iz  x 2  y 2 dm

• In SI units,

I  r 2dm  kg m2 
In U.S. customary units,

I  slug  ft2  lb  s2

ft
ft2









 lb  ft  s2 

Parallel Axis Theorem
• For the rectangular axes with origin at O and parallel 

centroidal axes,

Ix  y 2  z 2  dm  y  y  2  z  z  2  dm

 y 2  z 2  dm 2y y dm  2z z dm  y 2  z 2  dm

Ix  I x m y 2  z 2 
Iy  I y m z 2  x 2 
Iz  I z m x 2  y 2 

• Generalizing for any axis AA’ and a parallel centroidal 
axis,

2mdII 
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Moments of Inertia of Thin Plates
• For a thin plate of uniform thickness t and homogeneous 

material of density , the mass moment of inertia with 
respect to axis AA’ contained in the plate is

IA A  r 2dm  t r 2 dA

  t IA A ,area

• Similarly, for perpendicular axis BB’ which is also 
contained in the plate,

IB B   t IB B ,area

• For the axis CC’ which is perpendicular to the plate,

IC C   t JC ,area   t IA A ,area  IB B ,area 
 IA A  IB B 

Moments of Inertia of Thin Plates

• For the principal centroidal axes on a rectangular plate,

IA A   t IA A ,area   t 1
12

a3b  1
12

ma 2

IB B   t IB B ,area   t 1
12

ab3  1
12

mb2

IC C  IA A ,mass  IB B ,mass  1
12

m a2  b2 

• For centroidal axes on a circular plate,

IA A  IB B   t IA A ,area   t 1
4
 r 4  1

4
mr 2

IC C  IA A  IB B  1
2

mr 2
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Moments of Inertia of a 3D Body by Integration
• Moment of inertia of a homogeneous body 

is obtained from double or triple 
integrations of the form

 dVrI 2

• For bodies with two planes of symmetry, 
the moment of inertia may be obtained 
from a single integration by choosing thin 
slabs perpendicular to the planes of 
symmetry for dm.

• The moment of inertia with respect to a 
particular axis for a composite body may 
be obtained by adding the moments of 
inertia with respect to the same axis of the 
components.

Moments of Inertia of Common Geometric Shapes



10/22/2014

20

Sample Problem 9.12

Determine the moments of inertia 
of the steel forging with respect to 
the xyz coordinate axes, knowing 
that the specific weight of steel is 
490 lb/ft3.

SOLUTION:

• With the forging divided into a prism and 
two cylinders, compute the mass and 
moments of inertia of each component 
with respect to the xyz axes using the 
parallel axis theorem.

• Add the moments of inertia from the 
components to determine the total moments 
of inertia for the forging.

Sample Problem 9.12

each cylinder :

m  V
g


490lb/ft3  12  3 in3

1728in3 ft3 32.2ft s2 
m  0.0829 lb s2 ft

Iy  1
12

m 3a2  L2 mx 2

 1
12

0.0829  3 1
12 

2
 3

12 
2



 0.0829  2.5

12 2

 4.17103lb  ft s2

Iy  1
12

m 3a2  L2 m x 2  y 2 
 1

12
0.0829  3 1

12 
2
 3

12 
2



 0.0829  2.5

12 2  2
12 

2





 6.48103lb  ft s2

Ix  1
2

ma2 my 2

 1
2

0.0829  1
12 

2
 0.0829  2

12 
2

 2.59103lb  ft s2

cylinders  :in.2.,in5.2.,in3,.in1  yxLaSOLUTION:
• Compute the moments of inertia 

of each component with respect 
to the xyz axes.
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Sample Problem 9.12

prism:   

m  V
g


490lb/ft3 226 in3

1728in3 ft3 32.2ft s2 
m  0.211 lb s2 ft

prism (a = 2 in., b = 6 in., c = 2 in.):

Ix  Iz  1
12

m b2  c 2  1
12

0.211  6
12 

2
 2

12 
2





 4.88103 lb  ft s2

Iy  1
12

m c 2  a2  1
12

0.211  2
12 

2
 2

12 
2





 0.977103 lb  ft  s2

• Add the moments of inertia from the components 
to determine the total moments of inertia.

Ix  4.88103 2 2.59103 
23 sftlb1006.10  

xI

Iy  0.977103 2 4.17103 
23 sftlb1032.9  

yI

Iz  4.88103 2 6.48103 
23 sftlb1084.17  

zI

Moment of Inertia With Respect to an Arbitrary Axis
• IOL = moment of inertia with respect to axis OL

dmrdmpIOL
22   



• Expressing in terms of the vector 
components and expanding yields 

r


 and 

xzzxzyyzyxxy

zzyyxxOL

III

IIII





222

222





• The definition of the mass products of inertia of a 
mass is an extension of the definition of product of 
inertia of an area

xzmIdmzxI

zymIdmyzI

yxmIdmxyI

xzzx

zyyz

yxxy
















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Ellipsoid of Inertia.  Principal Axes of Inertia of a Mass
• Assume the moment of inertia of a body has been 

computed for a large number of axes OL and that point 
Q is plotted on each axis at a distance OLIOQ 1

• The locus of points Q forms a surface known as the 
ellipsoid of inertia which defines the moment of inertia 
of the body for any axis through O.

• x’,y’,z’ axes may be chosen which are the principal 
axes of inertia for which the products of inertia are 
zero and the moments of inertia are the principal 
moments of inertia.


