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Chapter 9, Distributed Forces: Moments of Inertia

« Previously considered distributed forces which were proportional to the
area or volume over which they act.

- The resultant was obtained by summing or integrating over the
areas or volumes.

- The moment of the resultant about any axis was determined by
computing the first moments of the areas or volumes about that
axis.

« Will now consider forces which are proportional to the area or volume
over which they act but also vary linearly with distance from a given axis.
- It will be shown that the magnitude of the resultant depends on the
first moment of the force distribution with respect to the axis.
- The point of application of the resultant depends on the second
moment of the distribution with respect to the axis.

* Current chapter will present methods for computing the moments and
products of inertia for areas and masses.

Moment of Inertia of an Area

» Consider distributed forces AF whose magnitudes are
proportional to the elemental areas AA on which they
act and also vary linearly with the distance of AA
from a given axis.

» Example: Consider the net hydrostatic force on a
submerged circular gate.

AF = pAA

The pressure, p, linearly increases with depth
p=p, SO

AF = »yAA, and the resultant force is

R= Y AF =y[ ydA, while the moment produced is

all AA
M, =] y*dA
» The integral [y dA is already familiar from our study of centroids.

« Theintegral | y® dA is one subject of this chapter, and is known as the area
moment of inertia, or more precisely, the second moment of the area.
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Moment of Inertia of an Area by Integration

y » Second moments or moments of inertia of
: an area with respect to the x and y axes,

ly=[y?dA 1, =[x*dA

d=yds di=xda o Eyaluation of the integrals is simplified by
choosing dA to be a thin strip parallel to
one of the coordinate axes.

dA=la=xidy __—

 For arectangular area,

h
I =[y*dA=[y’bdy = 1bh®
0

 The formula for rectangular areas may also
be applied to strips parallel to the axes,

dIX=%y3dx dly=x2dA=x2ydx

Polar Moment of Inertia

 The polar moment of inertia is an important
y parameter in problems involving torsion of
cylindrical shafts and rotations of slabs.

Jo = r’dA

x
A
\/ * The polar moment of inertia is related to the

rectangular moments of inertia,
Jo=Ir%dA=] (x2 +y2)iA= | x2dA+ [ y*dA

=1, +1

£
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Radius of Gyration of an Area

* Consider area A with moment of inertia
I,. Imagine that the area is
concentrated in a thin strip parallel to
the x axis with equivalent I,.

I =K2A k=X

A
A y y
& k, = radius of gyration with respect
*y—” to the x axis
0 : "0 * « Similarly,
A |

)

Determine the moment of
inertia of a triangle with respect
to its base.

Could a vertical strip have been
chosen for the calculation?
What is the disadvantage to that
choice? Think, then discuss
with a neighbor.

I, =k2A k, =.-2
y =%y YT\ A

Jo =kGA kO:‘/JTO

kG =k +kj

Sample Problem 9.1

SOLUTION:

 Adifferential strip parallel to the x axis is chosen for

dA.

i,

=y2dA  dA=Ildy
* For similar triangles,
h=y _ph=y  ga-phy dy
h h h

b

* Integrating dl, fromy=0toy = h,

h h—y bh
I, =Jy%dA=]y*b—Ldy=—(hy’—y?
o=1y'dA=]yb=">dy h{](y y* )y

h
_E{hy_g_y_“} bh®

l=—r
X 12

h, 3 4]
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Sample Problem 9.2

SOLUTION:

« An annular differential area element is chosen,

dJ, = u?dA dA =27 udu
Jo=1dlgy = f u?zu du):27rf uddu
0 0

Jo="r
)

a) Determine the centroidal polar
moment of inertia of a circular
area by direct integration. * From symmetry, I, =1,

b) Using the result of part a, 30:|X+|y:2|x £|-422|X
determine the moment of inertia 2
of a circular area with respect to a
diameter of the area. I giameter = Ix = %r“

Parallel Axis Theorem

= « Consider moment of inertia | of an area A
v / dAL A with respect to the axis AA’

i I =[y2dA

» The axis BB’ passes through the area centroid
and is called a centroidal axis.

I :jysz:j(y’+d)2dA
=[y'?dA+2d[y'dA+d?[dA

I =T+Ad2  parallel axis theorem
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Parallel Axis Theorem

&
S

» Moment of inertia I of a circular area with
respect to a tangent to the circle,

I; = I +Ad? =%7rl’4 +(7rr2)2

_5 4
=S7r

* Moment of inertia of a triangle with respect to a

D centroidal axis,
T 2
lan = lgg +Ad

— 2
Ig. = Iaa —Ad? =L bh® —Lbh(lh)

D
d'=2h
| ¢
B -
d;sl/
A
s

. 3
! ~ Lph

Moments of Inertia of Composite Areas

¢ The moment of inertia of a composite area A about a given axis is
obtained by adding the moments of inertia of the component areas
Ay A, A, ..., with respect to the same axis.

Tp= g5 y
= 1
e L S0 : L=l =Lmet
I -‘_&"J N £ : % ¥ 8
Rectangle "3 Semicirele $ IC T w | —
1= 3% 0 F—“I x o
JC II Mtb! s hSJ
L
N f Lomly= dwr
Triangle "'=5Irib"‘" Quarter circle _f :ﬁ
I,-i'-gvbﬁ’ JO— e
L
p L %m!ﬂ
fy= I = nr -~
Circle A § o Ellipse 4= rah
T Jo=5 8! 1




Problem 9.13

Yy

Determine by direct integration the moment of

inertia of the shaded area with respect to (a) the x-

axis (b) the y-axis

Moments of Inertia of Composite Areas

Axis X-X Axis Y-Y
Area | Depth Width L kg 7 L
Designation mm? | mm  mm 106 mm* mm mm | 10°mm* mm mm

¥ W60 x 1134 14400 | 463 280 554 196.3 633 663
W Shapes Wa10 % 85 10800 | 417 181 316 170.7 1794 406
(Wide-Flange W360 % 57 7230 | 358 172 160.2 149.4 1.1l 394
Shapes) X W200 % 46.1 5500 | 203 208 458 8.1 1544 513

¥

¥ 460 % 81.41 10390 | 457 152 335 1796 866 200
§ Shapes 5310 47.3 6032 | 805 127 907 1227 390 254
(American Standard | 250 %378 4806 | 254 18 516 1034 283 242
Shapes) S150 % 186 2362 | 152 84 92 622 0758 1791

X

Y

¥ C310 x 30.51 3929 305 T4 537 117.1 1615 2029 17.73
C Shapes C250 % 22.8 25897 254 65 28.1 98.3 0849 1811 1610
(American Standard C200 % 17.1 2181 203 57 1357 79.0 0549 1588 1450
Channels) Cl50x 122 1545 152 45 5.45 59.4 0288 1364 13.00

X
)

10/22/2014
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Sample Problem 9.4

Zin. SOLUTION:
=9 in.—| i _ _ _
 Determine location of the centroid of
—[ composite section with respect to a
c coordinate system with origin at the
14.101n. centroid of the beam section.
* Apply the parallel axis theorem to
determine moments of inertia of beam
6.77 in. section and plate with respect to
The strength of a W14x38 rolled steel composite section centroidal axis.

beam is increased by attaching a plate

. * Calculate the radius of gyration from the
to its upper flange.

moment of inertia of the composite
Determine the moment of inertia and section.

radius of gyration with respect to an

axis which is parallel to the plate and

passes through the centroid of the

section.

Sample Problem 9.4

S SOLUTION:
9in, . . . . .
I" = —I_L » Determine location of the centroid of composite section
with respect to a coordinate system with origin at the
» centroid of the beam section.
14.10 in. ) 5 ) a3
Section Ain y,in. | YA,in
Plate 6.75 7.425 | 50.12
| Beam Section | 11.20 0 0
6.77in. S A=17.95 > yA=50.12

Y
o .3
74;__ ¥ YT A=Y YA \7:27&14=50-12_m2 =2.792in.
3 1ln‘ o ! " > 17.95in
5] g *
Y
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Sample Problem 9.4

‘

 Apply the parallel axis theorem to determine moments of

=in.
|~—9 in-—-|i inertia of beam section and plate with respect to composite
section centroidal axis.
- a 2
c _[ L beam section = 15 +AY 2-385+ (11.20X2.792)
14.10 in, —472.3in*
— 2 3 2
l o prae = 1x + Ad® =5 Q)3 ) +(6.75)(7.425-2.792)
P— =145.2 in*
6.77 in.

of the composite section.

Y I = Ix',beam section T Ix',plate =472.3 +145.2
T T
d I, =618in*
7.425in. { ;
l m. c x
5 T x e« Calculate the radius of gyration from the moment of inertia
Y

.4
ky =[x - BL7:5in ke =5.87in.

A 17.95in2

Sample Problem 9.5

SOLUTION:

¢ Compute the moments of inertia of the
g | bounding rectangle and half-circle with
/ respect to the x axis.

* The moment of inertia of the shaded area is
obtained by subtracting the moment of
inertia of the half-circle from the moment
of inertia of the rectangle.

Determine the moment of inertia
of the shaded area with respect to
the x axis.
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Sample Problem 9.5

) W SOLUTION:
~r » Compute the moments of inertia of the bounding

rectangle and half-circle with respect to the x axis.

120 mm
Rectangle:
I, =%bh®=1(240)120)=138.2x10°mm®*
y Half-circle:

moment of inertia with respect to AA’,

A = A
m]Lj \gb”& | =4 1% =1 7(90)' =25.76 x10°mm"
=818 mm

moment of inertia with respect to x’,
I =l —AaZ= (25.76 xloﬁﬁz.n ><103)

x

_4r_(4)90) _
S3, 3, co2mm =7.20x10°mm’

b=120-a=81.8mm moment of inertia with respect to x,

_1..2_1 2 _
A=gar® =57(90) | =T+ Ab? =720 x10° + (12.72x10° )81.8)
3 2
=1272X10 mm =92.3><106mm4

Sample Problem 9.5

« The moment of inertia of the shaded area is obtained by
subtracting the moment of inertia of the half-circle from
the moment of inertia of the rectangle.

= 138.2x108mm?* - 92.3x108mm*

I, =45.9x10°mm*

Two important things to note:
1. The moments of inertia had to reference the same axis.
2. The parallel axis theorem had to be applied twice to the semicircle.



Product of Inertia

Y
* Product of Inertia:
r-—x——-di‘ I Xy = J. Xy dA

» When the x axis, the y axis, or both are an
axis of symmetry, the product of inertia is
zero.

* Parallel axis theorem for products of inertia:
Iy = Ty +XYA

Principal Axes and Principal Moments of Inertia

 The change of axes yields

I+ ly Iyg—1
Iy ==L+ Ycos20-1,,sin20

X 2
Iy +1ly Ix=1ly )
ly = 5 —Tcoszaﬂxysmw
-1
Ly =———25in260 + 1, 03 260

Given I, :ijdA ly :szdA e The equa_tions for l,- and Iy are the
parametric equations for a circle,

I, = | xydA
. Y I . (lx’_lave)z"'l)%y’:R2
we wish to determine moments
and product of inertia with bty o x=ly) 2
respect to new axes x” and y’. ave 2 Y

Note: x’=xcosd+ysind « The equations for I,. and 1., lead to the
y'=ycosd—xsinég same circle.
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Principal Axes and Principal Moments of Inertia

* Atthe points Aand B, I,., =0 and I, is
a maximum and minimum, respectively.

Imax,min = Iave tR
21y

tan 26, = -
=1y

« The equation for (,, defines two
angles, 90° apart which correspond to
the principal axes of the area about O.

* |l and I, are the principal moments
of inertia of the area about O.

Sample Problem 9.6

Determine the product of inertia of
the right triangle (a) with respect
to the x and y axes and

(b) with respect to centroidal axes
parallel to the x and y axes.

SOLUTION:

* Determine the product of inertia using
direct integration with the parallel axis
theorem on vertical differential area strips

« Apply the parallel axis theorem to
evaluate the product of inertia with respect
to the centroidal axes.

10/22/2014
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Sample Problem 9.6

-
4—‘-‘:——|
. ."-‘i ]
:

-.".I. f Q Yel

SOLUTION:
« Determine the product of inertia using direct integration

with the parallel axis theorem on vertical differential
area strips

X X
=hj1-=| dA=ydx=h/1-= [dx
y ( bj y ( bj

Xg =X yelz%y:%h 1-—

Integrating dl, fromx=0tox =b,

2
Ixy :Idlxy = I )_(elyeldA:zX(%)qz(l_%] o

Sample Problem 9.6

» Apply the parallel axis theorem to evaluate the
product of inertia with respect to the centroidal axes.

x=1b  y=1h

With the results from part a,

Ly = Doy + XYA

[y =4 b%n? - (1b)(1h)(1bh)

I_,,,: lbh2

10/22/2014
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Sample Problem 9.7

4 SOLUTION:

e Compute the product of inertia with
respect to the xy axes by dividing the
section into three rectangles and applying

b & v E the parallel axis theorem to each.
l mi « Determine the orientation of the
l—sii—s] T principal axes (Eq. 9.25) and the

principal moments of inertia (Eq. 9. 27).

For the section shown, the moments of
inertia with respect to the x and y axes
are l,=10.38 in*and I, = 6.97 in“.

Determine (a) the orientation of the
principal axes of the section about O,
and (b) the values of the principal
moments of inertia about O.

Sample Problem 9.7

¥ SOLUTION:
[—38in— ¢ Compute the product of inertia with respect to the xy axes
T by dividing the section into three rectangles.
3in Apply the parallel axis theorem to each rectangle,
4in o = _ s
— i, %‘"_L Ixy = Z(Ix'y' + XyA)
m_f Note that the product of inertia with respect to centroidal
30— axes parallel to the xy axes is zero for each rectangle.
¥
L2540, Rectangle | Area,in® | x,in.| vy, in. xyA,in*
al F | 15| -1.25| +1.75 -3.28
! 175 in. I 15 0 0 0
1 9 H* < I 15| +1.25| -1.75 -3.28
|.7jin—.“ | i > XyA=—6.56
125 in. ‘Ixy :ZWA:—G.SGin“‘

13



Sample Problem 9.7

» Determine the orientation of the principal axes (Eg. 9.25)

I, =10.38in*
l,=6.97in*
ly =-656in"

and the principal moments of inertia (Eq. 9. 27).
21 _
tan26, = —2 = — 2A-656) _ +3.85
Iy—1, 10.38-6.97

26, =75.4°and 255.4°

| =37.7° and 6, =127.7°|

2 2

2
_10.38+6.97 + \/(10.382— 6.97} (- 6.56)2

2
o+ I 1
_ y X y 2
I max,min = x +Ixy

2

Iy = lmax =15.45in*
Iy = lmin =1.8971in*

Mohr’s Circle for Moments and Products of Inertia

< The moments and product of inertia for an area

are plotted as shown and used to construct Mohr’s
circle,

l +1 I -1
y X y 2
lave = R= [ j+|Xy

2 2

Mohr’s circle may be used to graphically or
analytically determine the moments and product of
inertia for any other rectangular axes including the
principal axes and principal moments and products
of inertia.

10/22/2014
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Sample Problem 9.8

The moments and product of inertia
with respect to the x and y axes are |, =
7.24x106 mm?, 1, = 2.61x106 mm*, and

SOLUTION:
* Plot the points (I, I,,) and (I

-1,
yr Xy
Construct Mohr’s circle based on the
circle diameter between the points.

Based on the circle, determine the
orientation of the principal axes and the
principal moments of inertia.

Based on the circle, evaluate the
moments and product of inertia with
respect to the x’y” axes.

Ly = -2.54x108 mm4.

Using Mohr’s circle, determine (a) the
principal axes about O, (b) the values of
the principal moments about O, and (c)
the values of the moments and product
of inertia about the x’ and y’ axes

Sample Problem 9.8

I, (108 mm*) SOLUTION:
Y(2.61, +2.54) * Plot the points (I, I,,) and (I, ,-1,,). Construct Mohr’s
circle based on the circle diameter between the points.

OC = e =1(1, +1,)=4.925x10°mm*

‘i

C D \A o
1 : _ l B _
i (loé’mrrynq CD= z(lx Iy)— 2.315x10°mm
|
e T R=+/(CD) +(DX }* =3.437 x10°mm*

I, =7.24x10°mm?*
I, =2.61x10°mm*

» Based on the circle, determine the orientation of the
principal axes and the principal moments of inertia.

DX

Ly =—2.54x10°mm* an 20y = o =1097 20, =47.6° o =238°

Imax = OA=lg, +R ‘|max=8.36><106mm4‘

lmin = OB = lye R I nin =1.49x10°mm*|

10/22/2014
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Sample Problem 9.8

« Based on the circle, evaluate the moments and product
of inertia with respect to the x’y” axes.

The points X” and Y’ corresponding to the x” and y’ axes
are obtained by rotating CX and CY counterclockwise
through an angle ( = 2(60°) = 120°. The angle that CX’
forms with the X’ axes is ¢ = 120°- 47.6° = 72.4°,

I =OF =0C +CX'c08¢ = | 3 + RC072.4°

4.925 x 106 mm*

f 5 X 20=120° ‘Ixr =5.96><106mm4‘
3.437 x 106 o
min‘ d : ( Iy =0G =0C—-CY'cosgp =l —Rc0s72.4
G F

c T 1, =389x10°mm’|

T
I
i
|

X Iy = FX'=CY'sing = Rsin72.4°

: 28, = 47.6°

1y =3.28x10°mm’

OC =l =4.925x10°mm*
R =3.437 x10% mm*

Moment of Inertia of a Mass

a » Angular acceleration about the axis AA’ of the
\/ small mass Am due to the application of a
couple is proportional to r2Am.

r2Am = moment of inertia of the
mass Am with respect to the
axis AA’

 For a body of mass m the resistance to rotation
about the axis AA’is

I = rlem + rzzAm + r32Am +oe

= r2dm = mass moment of inertia

 The radius of gyration for a concentrated mass
with equivalent mass moment of inertia is

l=k2m k= |"
m

10/22/2014
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Moment of Inertia of a Mass

y » Moment of inertia with respect to the y coordinate
axis is
l,=]r’dm=] (zz+x2)im

« Similarly, for the moment of inertia with respect to
the x and z axes,

Ixzj(y2+zz)1m
" IZ:j(x2+y2)jm
* In Sl units,
I =Jr2dm=(kg-m2]

In U.S. customary units,

I = (slug- ﬂ2)=[ 'b];tsz ﬂ2]= (b ft-s?)

Parallel Axis Theorem

 For the rectangular axes with origin at O and parallel
centroidal axes,

=] (y2+22)1m =] [(y'+)7)2+(z’+7)2]dm

= (y’2 +z'2)dm +2y[ y'dm+27 | z'dm +()72 +ZZ)[ dm

¢ Generalizing for any axis AA’ and a parallel centroidal
axis,

I =T+md?

17



Moments of Inertia of Thin Plates

A

« For a thin plate of uniform thickness t and homogeneous
material of density p, the mass moment of inertia with
respect to axis AA’ contained in the plate is

I oo =] r2dm=pt] r’dA
=pt IAA',area
« Similarly, for perpendicular axis BB’ which is also
contained in the plate,

I gs: = Pt I BB',area

! ¢ For the axis CC” which is perpendicular to the plate,
/ / ICC' = pt ‘JC,area = pt (IAA’,area + IBB’,area)

B =|AA'+|BB'

Moments of Inertia of Thin Plates

_ = « For the principal centroidal axes on a rectangular plate,
3 2
Lpar =Pt an s area = 1 %a b):%ma
3 2
lgs: = Pt g area = PL (5 @D ):%mb

_ _ 1 2 2
ICC'_IAA',mass"'IBB',mass_Em(a +b )

« For centroidal axes on a circular plate,
— _ _ 1 4 1 2
Laa: = lag = Pt an. area _pt@ﬁr ):Imr

— _1 2
loc: =lpa +lgg =2 mr

10/22/2014
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Moments of Inertia of a 3D Body by Integration

* Moment of inertia of a homogeneous body

dm=par2dx
dl, = %rg dm
dly =dl, +x>dm= (%r‘"- + ,\'g)dm
dl.=dl. +x2dm= (;lri + xz)dm

is obtained from double or triple
integrations of the form

| = p[r?dv

For bodies with two planes of symmetry,
the moment of inertia may be obtained
from a single integration by choosing thin
slabs perpendicular to the planes of
symmetry for dm.

The moment of inertia with respect to a
particular axis for a composite body may
be obtained by adding the moments of
inertia with respect to the same axis of the
components.

Moments of Inertia of Common Geometric Shapes

c % |
g
i’=f==ém.[.5 y=I= ar
I, = 2ma?
Io= mib?+e?) sy
3 I,=1.=m(3a® + L?)
I,=—me? 1
¥ =12
=L mb?
L=g mby
f,: L= ;mt;aﬁ +h)
L= m(b?+ )
1
1y =5 mic? + a?)
i ¥
I, = 5 mla? +b?)

h=%=L=%mﬁ

10/22/2014
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Sample Problem 9.12

Determine the moments of inertia
of the steel forging with respect to
the xyz coordinate axes, knowing
that the specific weight of steel is
490 Ib/ft8.

SOLUTION:

* With the forging divided into a prism and
two cylinders, compute the mass and
moments of inertia of each component
with respect to the xyz axes using the
parallel axis theorem.

+ Add the moments of inertia from the
components to determine the total moments
of inertia for the forging.

Sample Problem 9.12

SOLUTION:
« Compute the moments of inertia
of each component with respect

to the xyz axes.
Ll
5 in.-1
3 in.
A

1 ’ lin.

@
]

9 |—2 in."% in-

each cylinder :
N (490Ib/ft3X7r><12 x 3)n3
A (728in*/ft* Y32.2f1/s7)

m=0.0829 Ib-s?/ft

cylinders(a =1in., L = 3in.,x = 2.5in., y = 2in.):

I, =ima®+my’

=1(0.0820)(5) +(0.0829)(% )
=259x107°Ib-ft s

1, =& m[3a’+L* ]+ mx?
= %(0.0829{3(%2)2 +(%)2}+(0.0829X% ]
=4.17x1071b-ft s’

l, =%m[3a2 + L2]+m[>‘(2 +72]

-1 (o.oszgia(l—lz)2 + (1—32)2}+ (0-0829i(%)2 + (Tzzﬂ

=6.48x1073Ib-ft-s?

10/22/2014
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Sample Problem 9.12

prism(@a=2in.,b=6in,c=21in.):

<l =1, =%m[b2+cz]=%(0.21li(%)2+(1%)zj
"l )
= [~ =4.88x107 Ib-ft s’

* 4 T oon l, =ﬁm[c2+a2]=ﬁ(0.21li(1—22)2+(%)2J
i

=0.977x10"% Ib-ft - 52

y

2 L .V < Add the moments of inertia from the components
i~ 2 to determine the total moments of inertia.
|, =4.88x107° +2(2.59 x10-3)
prism: ‘IX =10.06><10_3Ib-ft~52‘
oV _ (01N Y2 2 E)n’ 1,=0.977x10 +2(4.17x10")
a3 3 2
g (@728in’/ft*Y32.2ft/s*) 1, -9.32x10%1b 1.5
m=0.2111b-s°/ft 1,=4.88x10+2(6.48x10°)

1, =17.84x107Ib- ft -7

Moment of Inertia With Respect to an Arbitrary Axis
* lo. = moment of inertia with respect to axis OL

|0|_ =J. pzdm = HZX r‘zdm
« Expressing 4 and r in terms of the vector
components and expanding yields
lou = IxA% + 145 +1,22
=2l Ax Ay =21y Ay Ay — 2] 53 Ay Ay

 The definition of the mass products of inertia of a
mass is an extension of the definition of product of
inertia of an area

lyy = [ xydm = [ +mxy
ly, = [yzdm= Iy +myz

I = [zxdm = I, +mzx

21
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EII|p30|d of Inertia. Principal Axes of Inertia of a Mass

 Assume the moment of inertia of a body has been
computed for a large number of axes OL and that point
Q is plotted on each axis at a distance 0Q =1//Io_

* The locus of points Q forms a surface known as the
ellipsoid of inertia which defines the moment of inertia
of the body for any axis through O.

* X’,y’,2’ axes may be chosen which are the principal
axes of inertia for which the products of inertia are
zero and the moments of inertia are the principal
moments of inertia.
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