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Ch. 15 Kinematics of Rigid Bodies
• Kinematics of rigid bodies:  relations between 

time and the positions, velocities, and 
accelerations of the particles forming a rigid 
body.

• Classification of rigid body motions:

- general motion

- motion about a fixed point

- general plane motion

- rotation about a fixed axis

• curvilinear translation

• rectilinear translation

- translation:

Translation
• Consider rigid body in translation:

- direction of any straight line inside the 
body is constant,

- all particles forming the body move in 
parallel lines.

• For any two particles in the body,
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• Differentiating with respect to time,
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All particles have the same velocity.
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• Differentiating with respect to time again,

All particles have the same acceleration.
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Rotation About a Fixed Axis.  Velocity

• Consider rotation of rigid body about a 
fixed axis AA’

• Velocity vector of the particle P is 
tangent to the path with magnitude
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• The same result is obtained from

Rotation About a Fixed Axis.  Acceleration
• Differentiating to determine the acceleration,
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• Acceleration of P is combination of two 
vectors,
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Rotation About a Fixed Axis.  Representative Slab
• Consider the motion of a representative slab in 

a plane perpendicular to the axis of rotation.

• Velocity of any point P of the slab,




rv

rkrv


 

• Acceleration of any point P of the slab,
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• Resolving the acceleration into tangential and 
normal components,
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Equations Defining the Rotation of a Rigid Body About a Fixed Axis

• Motion of a rigid body rotating around a fixed axis is 
often specified by the type of angular acceleration.
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or• Recall

• Uniform Rotation,  = 0:

t  0

• Uniformly Accelerated Rotation,  = constant:
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Sample Problem 5.1

Cable C has a constant acceleration of 9 
in/s2 and an initial velocity of 12 in/s, 
both directed to the right.

Determine (a) the number of revolutions 
of the pulley in 2 s,  (b) the velocity and 
change in position of the load B after 2 s, 
and (c) the acceleration of the point D on 
the rim of the inner pulley at t = 0.

SOLUTION:

• Due to the action of the cable, the 
tangential velocity and acceleration of 
D are equal to the velocity and 
acceleration of C.  Calculate the initial 
angular velocity and acceleration.

• Apply the relations for uniformly 
accelerated rotation to determine the 
velocity and angular position of the 
pulley after 2 s.

• Evaluate the initial tangential and 
normal acceleration components of D.

Sample Problem 5.1
SOLUTION:
• The tangential velocity and acceleration of D are equal to the 

velocity and acceleration of C.  
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• Apply the relations for uniformly accelerated rotation to 
determine velocity and angular position of pulley after 2 s.
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Sample Problem 5.1
• Evaluate the initial tangential and normal acceleration 

components of D.
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Example Problem
• Evaluate the initial tangential and normal 

acceleration components of D.
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Example Problem

A series of small machine components 
being moved by a conveyor belt pass over 
a 6-in.-radius idler pulley. At the instant 
shown, the velocity of point A is 15 in./s to 
the left and its acceleration is 9 in./s2 to the 
right. Determine (a) the angular velocity 
and angular acceleration of the idler pulley, 
(b) the total acceleration of the machine
component at B.

SOLUTION:

• Using the linear velocity and 
accelerations, calculate the angular 
velocity and acceleration.

• Using the angular velocity, 
determine the normal acceleration.

• Determine the total acceleration 
using the tangential and normal 
acceleration components of B.

Example Problem

v= 15 in/s at= 9 in/s2Find the angular velocity of the idler 
pulley using the linear velocity at B.

15 in./s (6 in.)

v r



 2.50 rad/s

29 in./s (6 in.)

a r






21.500 rad/s

B

Find the angular velocity of the idler 
pulley using the linear velocity at B.

Find the normal acceleration of point B. 

2

2(6 in.)(2.5 rad/s)

na r


237.5 in./sn a

What is the direction of 
the normal acceleration 
of point B?

Downwards, towards 
the center
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Example Problem

an= 37.5 in./s2

Find the total acceleration of the 
machine component at point B. 

at= 9 in/s2

237.5 in./sn a

238.6 in./sB a 76.5

at= 9 in/s2

an= 37.5 in/s2

Ba

29.0 in./st a

B

2 2 29.0 37.5 38.6 in./s  a

Calculate the magnitude

Calculate the angle from 
the horizontal

o37.5
arctan 76.5

9.0
    

 

Combine for a final answer

General Plane Motion

• General plane motion is neither a translation nor 
a rotation.

• General plane motion can be considered as the 
sum of a translation and rotation.

• Displacement of particles A and B to A2 and B2

can be divided into two parts:  
- translation to A2 and
- rotation of       about A2 to B2

1B
1B
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Absolute and Relative Velocity in Plane Motion

• Any plane motion can be replaced by a translation of an 
arbitrary reference point A and a simultaneous rotation 
about A.

ABAB vvv
 

 rvrkv ABABAB  

ABAB rkvv
  

Absolute and Relative Velocity in Plane Motion

• Assuming that the velocity vA of end A is known, wish to determine the 
velocity vB of end B and the angular velocity  in terms of vA, l, and .

• The direction of vB and vB/A are known.  Complete the velocity diagram.
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
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
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Absolute and Relative Velocity in Plane Motion

• Selecting point B as the reference point and solving for the velocity vA of end A
and the angular velocity  leads to an equivalent velocity triangle.

• vA/B has the same magnitude but opposite sense of vB/A.  The sense of the 
relative velocity is dependent on the choice of reference point.

• Angular velocity  of the rod in its rotation about B is the same as its rotation 
about A.  Angular velocity is not dependent on the choice of reference point.

Sample Problem 15.2

The double gear rolls on the 
stationary lower rack:  the velocity of 
its center is 1.2 m/s.

Determine (a) the angular velocity of 
the gear, and (b) the velocities of the 
upper rack R and point D of the gear.

SOLUTION:

• The displacement of the gear center in one 
revolution is equal to the outer circumference.  

For xA > 0 (moves to right),  < 0 (rotates 
clockwise).





 122
rx

r

x
A

A 

Differentiate to relate the translational and 
angular velocities.

m0.150
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1

1





r

v
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A

A




 kk


srad8

x
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Sample Problem 15.2
• For any point P on the gear, APAAPAP rkvvvv

  

Velocity of the upper rack is equal to 
velocity of point B:

     
   ii
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



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 ivR

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Velocity of the point D:

     iki

rkvv ADAD




m 150.0srad8sm2.1 

 

   
sm697.1
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


D

D

v

jiv


Sample Problem 15.3

The crank AB has a constant clockwise 
angular velocity of 2000 rpm.

For the crank position indicated, 
determine (a) the angular velocity of 
the connecting rod BD, and (b) the 
velocity of the piston P.

SOLUTION:

• Will determine the absolute velocity of 
point D with

BDBD vvv
 

• The velocity       is obtained from the 
given crank rotation data. 

Bv


• The directions of the absolute velocity 
and the relative velocity            are 
determined from the problem geometry.

Dv


BDv


• The unknowns in the vector expression 
are the velocity magnitudes
which may be determined from the 
corresponding vector triangle.

BDD vv  and 

• The angular velocity of the connecting 
rod is calculated from .BDv
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Sample Problem 15.3
SOLUTION:

• Will determine the absolute velocity of point D with

BDBD vvv
 

• The velocity       is obtained from the crank rotation data. Bv


    srad 4.209in.3

srad 4.209
rev

rad2

s60

min

min

rev
2000


























ABB

AB

ABv 



The velocity direction is as shown.

• The direction of the absolute velocity        is horizontal. 
The direction of the relative velocity           is 
perpendicular to BD.   Compute the angle between the 
horizontal and the connecting rod from the law of sines.

Dv


BDv





95.13
in.3

sin

in.8

40sin 

Sample Problem 15.3

• Determine the velocity magnitudes 
from the vector triangle.

BDD vv  and 

BDBD vvv
 







 sin76.05

sin.3.628

50sin95.53sin
BDD vv

sin.9.495

sft6.43sin.4.523




BD

D

v

v

srad 0.62
in. 8

sin.9.495







l

v

lv

BD
BD

BDBD





sft6.43 DP vv

 kBD


srad 0.62
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Example Problem

In the position shown, bar AB
has an angular velocity of 4 rad/s 
clockwise. Determine the angular 
velocity of bars BD and DE.

Determine vB with respect to A, then work 
your way along the linkage to point E.

(4 rad/s)AB   k

/ /(7 in.) ( 4 ) ( 7 )

(28 in./s)
B A B AB B A

B

r      



r i v k i

v j

 

/AB A AB B  v v r

Write vB in terms of point A, calculate vB.

Example Problem
Determine vD with respect to B.

AB= 4 rad/s

x

y

/

/

(8 in.)

28 ( )  ( 8 )

28 8

BD BD D B

D B BD D B BD

D BD






  

      

 

k r j

v v r j k j

v j i





/

/

      (11 in.) (3 in.)

( ) ( 11 3 )

11 3

DE DE D E

D DE D E DE

D DE DE




 

   

     

  

k r i j

v r k  i j

v j i





Determine vD with respect to E, then 
equate it to equation above.

Equating components of the two expressions for vD

,Dv

j:    28 11 2.5455 rad/sDE DE    

3
: 8 3

8BD DE BD BD      i 0.955 rad/sBD 

2.55 rad/sDE 
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Instantaneous Center of Rotation in Plane Motion

• Plane motion of all particles in a slab can always be 
replaced by the translation of an arbitrary point A and a 
rotation about A with an angular velocity that is 
independent of the choice of A.

• The same translational and rotational velocities at A are 
obtained by allowing the slab to rotate with the same 
angular velocity about the point C on a perpendicular to 
the velocity at A.

• The velocity of all other particles in the slab are the same 
as originally defined since the angular velocity and 
translational velocity at A are equivalent.

• As far as the velocities are concerned, the slab seems to 
rotate about the instantaneous center of rotation C.

Instantaneous Center of Rotation in Plane Motion

• If the velocity at two points A and B are known, the 
instantaneous center of rotation lies at the intersection 
of the perpendiculars to the velocity vectors through A
and B .

• If the velocity vectors at A and B are perpendicular to 
the line AB, the instantaneous center of rotation lies at 
the intersection of the line AB with the line joining the 
extremities of the velocity vectors at A and B.

• If the velocity vectors are parallel, the instantaneous 
center of rotation is at infinity and the angular velocity 
is zero.

• If the velocity magnitudes are equal, the instantaneous 
center of rotation is at infinity and the angular velocity 
is zero.
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Instantaneous Center of Rotation in Plane Motion
• The instantaneous center of rotation lies at the intersection of 

the perpendiculars to the velocity vectors through A and B .




cosl

v

AC

v AA     






tan
cos

sin

A

A
B

v
l

v
lBCv





• The velocities of all particles on the rod are as if they were 
rotated about C.

• The particle at the center of rotation has zero velocity.

• The particle coinciding with the center of rotation changes 
with time and the acceleration of the particle at the 
instantaneous center of rotation is not zero.

• The trace of the locus of the center of rotation on the body 
is the body centrode and in space is the space centrode.

Sample Problem 15.4

The double gear rolls on the 
stationary lower rack:  the velocity 
of its center is 1.2 m/s.

Determine (a) the angular velocity 
of the gear, and (b) the velocities of 
the upper rack R and point D of the 
gear.

SOLUTION:

• The point C is in contact with the stationary 
lower rack and, instantaneously, has zero 
velocity.  It must be the location of the 
instantaneous center of rotation.

 ivR


sm2

srad8
m 0.15

sm2.1


A

A
AA r

v
rv 

  srad8m 25.0 BBR rvv

 
  srad8m 2121.0

m 2121.02m 15.0




DD

D

rv

r

  sm2.12.1

sm697.1

jiv

v

D

D  


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Sample Problem 15.5

The crank AB has a constant clockwise 
angular velocity of 2000 rpm.

For the crank position indicated, 
determine (a) the angular velocity of 
the connecting rod BD, and (b) the 
velocity of the piston P.

SOLUTION:

• Determine the velocity at B from the 
given crank rotation data.

• The direction of the velocity vectors at B 
and D are known.  The instantaneous 
center of rotation is at the intersection of 
the perpendiculars to the velocities 
through B and D.

• Determine the angular velocity about the 
center of rotation based on the velocity 
at B.

• Calculate the velocity at D based on its 
rotation about the instantaneous center 
of rotation.

Sample Problem 15.5
SOLUTION:
• From Sample Problem 15.3,

  



95.13

sin.3.628sin.3.4819.403


BB vjiv



• The instantaneous center of rotation is at the intersection 
of the perpendiculars to the velocities through B and D.




05.7690

95.5340




D

B







 sin50

in. 8

95.53sin05.76sin

CDBC

in. 44.8in. 14.10  CDBC

• Determine the angular velocity about the center of 
rotation based on the velocity at B.

 

in.10.14

sin.3.628




BC

v

BCv

B
BD

BDB





• Calculate the velocity at D based on its rotation about 
the instantaneous center of rotation.

    srad0.62in. 44.8 BDD CDv 

sft6.43sin.523  DP vv

srad0.62BD



16

Instantaneous Center of Zero Velocity

What happens to the location of the instantaneous center of 
velocity if the crankshaft angular velocity increases from 
2000 rpm in the previous problem to 3000 rpm?

What happens to the location of the instantaneous center of 
velocity if the angle  is 0?

Example Problem

In the position shown, bar AB has an angular velocity of 4 
rad/s clockwise. Determine the angular velocity of bars BD
and DE.
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Example Problem

vD

What direction is the velocity of B?

vB

What direction is the velocity of D?

AB= 4 rad/s

( ) (0.25 m)(4 rad/s) 1 m/sB ABAB   vWhat is the velocity of B?

1 0.06 m
tan 21.8

0.15 m
   

Find  

Example Problem

vD

vB

B

D



Locate instantaneous center C at intersection of lines drawn 
perpendicular to vB and  vD.

C 0.1 m 0.1 m
0.25 m

tan tan 21.8?

0.25 m 0.25 m
0.2693 m

cos cos21.8?

BC

DC





  

  
100 mm

1 m/s (0.25 m) BD

4 rad/sBD 
Find DE

0.25 m
( ) (4 rad/s)

cosD BDv DC 


 
1 m/s 0.15 m

( ) ; ;
cos cosD DE DEv DE  

 
  6.67 rad/sDE 

Find distances BC and DC

( )B BDv BC 

Calculate BD
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Problem 15.40

Collar B moves upward with a constant 
velocity of 1.5 m/s. At the instant when 
=50o, determine (a) the angular velocity of 
rod AB, (b) the velocity of end A of the rod.

Absolute and Relative Acceleration in Plane Motion

• Absolute acceleration of a particle of the slab,

ABAB aaa
 

• Relative acceleration          associated with rotation about A includes 
tangential and normal components,

ABa


 
  ABnAB

ABtAB

ra

rka





2





  
  2



ra

ra

nAB

tAB




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Absolute and Relative Acceleration in Plane Motion

• Given
determine  

, and AA va


. and 
Ba

   
tABnABA

ABAB

aaa

aaa








• Vector result depends on sense of         and the 
relative magnitudes of  

nABA aa  and 
Aa


• Must also know angular velocity .

Absolute and Relative Acceleration in Plane Motion


 x components:  cossin0 2 llaA 

 y components:  sincos2 llaB 

• Solve for aB and .

• Write in terms of the two component equations,ABAB aaa
 
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Analysis of Plane Motion in Terms of a Parameter
• In some cases, it is advantageous to determine the 

absolute velocity and acceleration of a mechanism 
directly.

sinlxA  coslyB 




cos

cos

l

l

xv AA











sin

sin

l

l

yv BB













cossin

cossin
2

2

ll

ll

xa AA














sincos

sincos
2

2

ll

ll

ya BB










Sample Problem 15.6

The center of the double gear has a 
velocity and acceleration to the right of 
1.2 m/s and 3 m/s2, respectively.  The 
lower rack is stationary.

Determine (a) the angular acceleration 
of the gear, and (b) the acceleration of 
points B, C, and D.




11

1

rrv

rx

A

A






srad 8
m 0.150

sm2.1

1


r

vA

 11 rraA  

m 150.0

sm3 2

1


r

aA

 kk
 2srad20

SOLUTION:
• The expression of the gear position as a 

function of  is differentiated twice to define 
the relationship between the translational and 
angular accelerations.
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Sample Problem 15.6

   

         
     jii

jjki

rrka

aaaaaa

ABABA

nABtABAABAB









222

222

2

sm40.6sm2sm3

m100.0srad8m100.0srad20sm3











    222 sm12.8sm40.6m5  BB ajisa


• The acceleration of each point  
is obtained by adding the 
acceleration of the gear center 
and the relative accelerations 
with respect to the center.  

The latter includes normal and 
tangential acceleration 
components.

Sample Problem 15.6

         
     jii

jjki

rrkaaaa ACACAACAC







222

222

2

sm60.9sm3sm3

m150.0srad8m150.0srad20sm3





 

 jac
 2sm60.9

         
     iji

iiki

rrkaaaa ADADAADAD







222

222

2

sm60.9sm3sm3

m150.0srad8m150.0srad20sm3





 

    222 sm95.12sm3m6.12  DD ajisa

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Sample Problem 15.7

Crank AG of the engine system has  a 
constant clockwise angular velocity of 
2000 rpm.  

For the crank position shown, 
determine the angular acceleration of 
the connecting rod BD and the 
acceleration of point D.

SOLUTION:

• The angular acceleration of the 
connecting rod BD and the acceleration 
of point D will be determined from 

   
nBDtBDBBDBD aaaaaa

 

• The acceleration of B is determined from 
the given rotation speed of AB.  

• The directions of the accelerations

are 

determined from the geometry. 
   

nBDtBDD aaa


 and,,

• Component equations for acceleration 
of point D are solved simultaneously for 
acceleration of D and angular 
acceleration of the connecting rod.

Sample Problem 15.7

• The acceleration of B is determined from the given rotation 
speed of AB.

SOLUTION:

• The angular acceleration of the connecting rod BD and 
the acceleration of point D will be determined from 

   
nBDtBDBBDBD aaaaaa

 

   22
12
32

AB

sft962,10srad4.209ft 

0

constantsrad209.4rpm2000






ABB

AB

ra 




  jiaB
  40sin40cossft962,10 2
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Sample Problem 15.7

• The directions of the accelerations are 

determined from the geometry. 
   

nBDtBDD aaa


 and,,

From Sample Problem 15.3,  BD = 62.0 rad/s,  = 13.95o.

       22
12
82 sft2563srad0.62ft  BDnBD BDa 

    jia
nBD

  95.13sin95.13cossft2563 2

      BDBDBDtBD BDa  667.0ft
12
8 

The direction of (aD/B)t is known but the sense is not known,

    jia BDtBD
  05.76cos05.76sin667.0 

iaa DD


 

Sample Problem 15.7

   
nBDtBDBBDBD aaaaaa

 

• Component equations for acceleration of point D are solved 
simultaneously.

x components:

 95.13sin667.095.13cos256340cos962,10 BDDa 

 95.13cos667.095.13sin256340sin962,100 BD

y components:

 
 ia

k

D

BD




2

2

sft9290

srad9940




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Example

Knowing that at the instant 
shown bar AB has a constant 
angular velocity of 4 rad/s 
clockwise, determine the 
angular acceleration of bars 
BD and DE.

SOLUTION:

• The angular velocities were determined 
in a previous problem by simultaneously 
solving the component equations for

BDBD vvv
 

• The angular accelerations are now 
determined by simultaneously solving 
the component equations for the relative 
acceleration equation.

Example

From our previous problem, we used the relative 
velocity equations to find that:

AB= 4 rad/s 0.955 rad/sBD 2.55 rad/sDE 

0AB 
We can now apply the relative acceleration 
equation with

2
/A /AB A AB B AB B   a a r r

2 2 2
/ (4) ( 7 ) 112 in./sB AB B A     a r i i

Analyze
Bar AB

Analyze Bar BD
2 2

/ / 112 ( 8 ) (0.95455) ( 8 )D B BD D B BD D B BD          a a r r i k j j

(112 8 ) 7.289D BD  a i j
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Example

AB= 4 rad/s

Analyze Bar DE
2

/ /

2( 11 3 ) (2.5455) ( 11 3 )

11 3 71.275 19.439

D DE D E DE D E

DE

DE DE

r


 

  

      
    

a r

k i j i j

j i i j



( 3 71.275) (11 19.439)D DE DE     a i j

Equate like components of aD

j:     7.289 (11 19.439)DE   22.4298 rad/sDE  

i:     112 8 [ (3)( 2.4298) 71.275]BD    
24.1795 rad/sBD  

From previous page, we had: (112 8 ) 7.289D BD  a i j

Problem 15.124

Arm AB has a constant angular velocity of 16 rad/s 
counterclockwise. At the instant when =90o, determine the 
acceleration (a) of collar D, (b) of the midpoint G of bar BD.
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Rate of Change With Respect to a Rotating Frame

• Frame OXYZ is fixed.

• Frame Oxyz rotates about 
fixed axis OA with angular 
velocity 



• Vector function         varies 
in direction and magnitude.

 tQ


  kQjQiQQ zyxOxyz

 

• With respect to the fixed OXYZ frame,

  kQjQiQkQjQiQQ zyxzyxOXYZ
 

• rate of change 
with respect to rotating frame.

   Oxyzzyx QkQjQiQ 

• If       were fixed within Oxyz then               is 
equivalent to velocity of a point in a rigid body 
attached to Oxyz and 

 OXYZQ


QkQjQiQ zyx

 

Q


• With respect to the rotating Oxyz frame,

kQjQiQQ zyx




• With respect to the fixed OXYZ frame,

    QQQ OxyzOXYZ

 

Coriolis Acceleration 
• Frame OXY is fixed and frame Oxy rotates with angular 

velocity .


• Position vector      for the particle P is the same in both 
frames but the rate of change depends on the choice of 
frame.

Pr


• The absolute velocity of the particle P is

   OxyOXYP rrrv  

• Imagine a rigid slab attached to the rotating frame Oxy
or F for short.  Let P’ be a point on the slab which 
corresponds instantaneously to position of particle P.   

   OxyP rv 
F velocity of P along its path on the slab

'Pv


absolute velocity of point P’ on the slab

• Absolute velocity for the particle P may be written as

FPPP vvv
  
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Coriolis Acceleration 

 

FPP

OxyP

vv

rrv









• Absolute acceleration for the particle P is

    OxyOXYP r
dt

d
rra  

     OxyOxyP rrrra   2

   

      OxyOxyOxy

OxyOXY

rrr
dt

d

rrr







but,

 
 OxyP

P

ra

rra








F

• Utilizing the conceptual point P’ on the slab,

• Absolute acceleration for the particle P becomes
 

   22

2











F

F

F

POxyc

cPP

OxyPPP

vra

aaa

raaa






Coriolis acceleration

Motion About a Fixed Point
• The most general displacement of a rigid body with a 

fixed point O is equivalent to a rotation of the body 
about an axis through O.

• With the instantaneous axis of rotation and angular 
velocity the velocity of a particle P of the body is,

r
dt

rd
v

  

and the acceleration of the particle P is

  .
dt

d
rra


 

• Angular velocities have magnitude and direction and 
obey parallelogram law of addition. They are vectors.

• As the vector        moves within the body and in space, 
it generates a body cone and space cone which are 
tangent along the instantaneous axis of rotation.



• The angular acceleration       represents the velocity of 
the tip of     .


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General Motion
• For particles A and B of a rigid body,

ABAB vvv
 

• Particle A is fixed within the body and motion of 
the body relative to AX’Y’Z’ is the motion of a 
body with a fixed point

ABAB rvv
  

• Similarly, the acceleration of the particle P is

 ABABA

ABAB

rra

aaa










• Most general motion of a rigid body is equivalent to: 
- a translation in which all particles have the same 

velocity and acceleration of a reference particle A, and 
- of a motion in which particle A is assumed fixed.

Three-Dimensional Motion.  Coriolis Acceleration
• With respect to the fixed frame OXYZ and rotating 

frame Oxyz,

    QQQ OxyzOXYZ

 

• Consider motion of particle P relative to a rotating 
frame Oxyz or F for short.  The absolute velocity can 
be expressed as

 
FPP

OxyzP

vv

rrv









• The absolute acceleration can be expressed as

     

  onaccelerati Coriolis 22

2









F

F

POxyzc

cPp

OxyzOxyzP

vra

aaa

rrrra





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Frame of Reference in General Motion

Consider:
- fixed frame OXYZ,
- translating frame AX’Y’Z’, and
- translating and rotating frame Axyz 

or F.

• With respect to OXYZ and AX’Y’Z’,

APAP

APAP

APAP

aaa

vvv

rrr













• The velocity and acceleration of P relative to 
AX’Y’Z’ can be found in terms of the velocity 
and acceleration of P relative to Axyz.

 
FPP

AxyzAPAPAP

vv

rrvv










 
   

cPP

AxyzAPAxyzAP

APAPAP

aaa

rr

rraa











 F

2


