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Ch. 16 Plane Motion of Rigid Bodies: Forces and Accelerations
• Consider a rigid body acted upon 

by several external forces.

• Assume that the body is made of 
a large number of particles.

• For the motion of the mass center 
G of the body with respect to the 
Newtonian frame Oxyz,

amF



• For the motion of the body with 

respect to the centroidal frame 
Gx’y’z’,

GG HM 


• System of external forces is 
equipollent to the system 
consisting of . and GHam 

Angular Momentum of a Rigid Body in Plane Motion

• Consider a rigid slab in 
plane motion.

• Angular momentum of the slab may be 
computed by
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• After differentiation,

  IIHG 

• Results are also valid for plane motion of bodies 
which are symmetrical with respect to the 
reference plane.

• Results are not valid for asymmetrical bodies or 
three-dimensional motion.
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Plane Motion of a Rigid Body: D’Alembert’s Principle

IMamFamF Gyyxx  

• Motion of a rigid body in plane motion is 
completely defined by the resultant and moment 
resultant about G of the external forces.

• The external forces and the collective effective 
forces of the slab particles are equipollent (reduce 
to the same resultant and moment resultant) and 
equivalent (have the same effect on the body).

• The most general motion of a rigid body that is 
symmetrical with respect to the reference plane 
can be replaced by the sum of a translation and a 
centroidal rotation.

• d’Alembert’s Principle:  The external forces 
acting on a rigid body are equivalent to the 
effective forces of the various particles forming 
the body.

Problems Involving the Motion of a Rigid Body

• The fundamental relation between the forces 
acting on a rigid body in plane motion and 
the acceleration of its mass center and the 
angular acceleration of the body is illustrated 
in a free-body-diagram equation.

• The techniques for solving problems of 
static equilibrium may be applied to solve 
problems of plane motion by utilizing

- d’Alembert’s principle, or

- principle of dynamic equilibrium

• These techniques may also be applied to 
problems involving plane motion of 
connected rigid bodies by drawing a free-
body-diagram equation for each body and 
solving the corresponding equations of 
motion simultaneously.
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Free Body Diagrams and Kinetic Diagrams

12 - 5

Put the inertial terms for the body of interest on the kinetic diagram.

2.  Draw in the mass times acceleration of the particle; if unknown, 
do this in the positive direction according to your chosen axes. For 
rigid bodies, also include the rotational term, IG.  

1.  Isolate the body of interest (free body) 

           m F a
       G I M

Free Body Diagrams and Kinetic Diagrams

2 - 6

Draw the FBD and KD for
the bar AB of mass m. A
known force P is applied at
the bottom of the bar.
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Free Body Diagrams and Kinetic Diagrams
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1.  Isolate body
2.  Axes

3.  Applied forces

4.  Replace supports with forces

5.  Dimensions
6.  Kinetic diagram
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Free Body Diagrams and Kinetic Diagrams

A drum of 4 inch radius is attached 
to a disk of 8 inch radius.  The 
combined drum and disk had a 
combined mass of 10 lbs.  A cord is 
attached as shown, and a force of 
magnitude P=5 lbs is applied.  The 
coefficients of static and kinetic 
friction between the wheel and 
ground are s= 0.25 and k= 0.20, 
respectively.  Draw the FBD and 
KD for the wheel.
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Free Body Diagrams and Kinetic Diagrams

xma
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1.  Isolate body
2.  Axes

3.  Applied forces

4.  Replace supports with forces

5.  Dimensions
6.  Kinetic diagram

4 in

8 in

Free Body Diagrams and Kinetic Diagrams

The ladder AB slides down 
the wall as shown.   The wall 
and floor are both rough. 
Draw the FBD and KD for 
the ladder.
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Free Body Diagrams and Kinetic Diagrams
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1.  Isolate body

2.  Axes

3.  Applied forces

4.  Replace supports with forces

5.  Dimensions

6.  Kinetic diagram
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Sample Problem 16.1

At a forward speed of 30 ft/s, the truck 
brakes were applied, causing the wheels 
to stop rotating.  It was observed that the 
truck to skidded to a stop in 20 ft.

Determine the magnitude of the normal 
reaction and the friction force at each 
wheel as the truck skidded to a stop.

SOLUTION:

• Calculate the acceleration during the 
skidding stop by assuming uniform 
acceleration.

• Apply the three corresponding scalar 
equations to solve for the unknown 
normal wheel forces at the front and rear 
and the coefficient of friction between 
the wheels and road surface.

• Draw the free-body-diagram equation 
expressing the equivalence of the 
external and effective forces.
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Sample Problem 16.1

ft20
s

ft
300  xv

SOLUTION:

• Calculate the acceleration during the skidding stop 
by assuming uniform acceleration.

 
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s
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ft
5.22a

• Draw a free-body-diagram equation expressing the 
equivalence of the external  and inertial terms.

• Apply the corresponding scalar equations. 

0 WNN BA
  

effyy FF
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Sample Problem 16.1

WNWN BA 350.0

 WNN Arear 350.0
2
1

2
1  WNrear 175.0

 WNN Vfront 650.0
2
1

2
1  WN front 325.0

  WNF rearkrear 175.0690.0 
WFrear 122.0

  WNF frontkfront 325.0690.0 
WFfront 227.0.0

• Apply the corresponding scalar equations.
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Sample Problem 16.2

The thin plate of mass 8 kg is held in 
place as shown.  

Neglecting the mass of the links, 
determine immediately after the wire 
has been cut (a) the acceleration of the 
plate, and (b) the force in each link.

SOLUTION:

• Note that after the wire is cut, all 
particles of the plate move along parallel 
circular paths of radius 150 mm.  The 
plate is in curvilinear translation.

• Draw the free-body-diagram equation 
expressing the equivalence of the 
external and effective forces.

• Resolve into scalar component equations 
parallel and perpendicular to the path of 
the mass center.

• Solve the component equations and the 
moment equation for the unknown 
acceleration and link forces.

Sample Problem 16.2
SOLUTION:

• Note that after the wire is cut, all particles of the 
plate move along parallel circular paths of radius 
150 mm.  The plate is in curvilinear translation.

• Draw the free-body-diagram equation expressing 
the equivalence of the external and effective 
forces.

• Resolve the diagram equation into components 
parallel and perpendicular to the path of the mass 
center.

   efftt FF




30cos

30cos

mg

amW

   30cosm/s81.9 2a

2sm50.8a 60o
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Sample Problem 16.2

2sm50.8a 60o

• Solve the component equations and the moment 
equation for the unknown acceleration and link 
forces.

 effGG MM  

     
      0mm10030cosmm25030sin
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 N9.471815.0DFF CFDF N70.8

Sample Problem 16.3

A pulley weighing 12 lb and having a 
radius of gyration of 8 in. is connected to 
two blocks as shown.

Assuming no axle friction, determine the 
angular acceleration of the pulley and the 
acceleration of each block.

SOLUTION:

• Determine the direction of rotation by 
evaluating the net moment on the 
pulley due to the two blocks.

• Relate the acceleration of the blocks to 
the angular acceleration of the pulley.

• Draw the free-body-diagram equation 
expressing the equivalence of the 
external and effective forces on the 
complete pulley plus blocks system.

• Solve the corresponding moment 
equation for the pulley angular 
acceleration.
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Sample Problem 16.3

• Relate the acceleration of the blocks to the angular 
acceleration of the pulley.

 

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W
kmInote:

SOLUTION:

• Determine the direction of rotation by evaluating the net 
moment on the pulley due to the two blocks.

      lbin10in10lb5in6lb10  GM

rotation is counterclockwise.

Sample Problem 16.3
• Draw the free-body-diagram equation expressing the 

equivalence of the external and effective forces on the 
complete pulley and blocks system.
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• Solve the corresponding moment equation for the pulley 
angular acceleration.

2srad374.2

  2
12
6 srad2.374ft

 BB ra
2sft187.1Ba

  2
12
10 srad2.374ft

 AA ra
2sft978.1Aa

Then,
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Sample Problem 16.4

A cord is wrapped around a 
homogeneous disk of mass 15 kg.  
The cord is pulled upwards with a 
force T = 180 N.

Determine: (a) the acceleration of the 
center of the disk, (b) the angular 
acceleration of the disk, and (c) the 
acceleration of the cord.

SOLUTION:

• Draw the free-body-diagram equation 
expressing the equivalence of the external 
and effective forces on the disk.

• Solve the three corresponding scalar 
equilibrium equations for the horizontal, 
vertical, and angular accelerations of the 
disk.

• Determine the acceleration of the cord by 
evaluating the tangential acceleration of 
the point A on the disk.

Sample Problem 16.4
SOLUTION:
• Draw the free-body-diagram equation expressing the 

equivalence of the external and effective forces on the 
disk.

  
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
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



2srad0.48

   effxx FF

xam0 0xa

• Solve the three scalar equilibrium equations.
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Sample Problem 16.4

2sm19.2ya

2srad0.48

0xa

• Determine the acceleration of the cord by evaluating the 
tangential acceleration of the point A on the disk.

   
  22 srad48m5.0sm19.2 


tGAtAcord aaaa



2sm2.26corda

Sample Problem 16.5

A uniform sphere of mass m and radius 
r is projected along a rough horizontal 
surface with a linear velocity v0.  The 
coefficient of kinetic friction between 
the sphere and the surface is k.

Determine: (a) the time t1 at which the 
sphere will start rolling without sliding, 
and (b) the linear and angular velocities 
of the sphere at time t1.

SOLUTION:

• Draw the free-body-diagram equation 
expressing the equivalence of the 
external and effective forces on the 
sphere.

• Solve the three corresponding scalar 
equilibrium equations for the normal 
reaction from the surface and the linear 
and angular accelerations of the sphere.

• Apply the kinematic relations for 
uniformly accelerated motion to 
determine the time at which the 
tangential velocity of the sphere at the 
surface is zero, i.e., when the sphere 
stops sliding.
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Sample Problem 16.5
SOLUTION:

• Draw the free-body-diagram equation expressing the 
equivalence of external and effective forces on the 
sphere.

• Solve the three scalar equilibrium equations.

  
effyy FF

0WN mgWN 
   effxx FF
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3
2 mrrmg

IFr
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

r

gk
2

5


   effGG MM

NOTE: As long as the sphere both rotates and slides, 
its linear and angular motions are uniformly 
accelerated.

Sample Problem 16.5

ga k

r

gk
2

5


• Apply the kinematic relations for uniformly accelerated 
motion to determine the time at which the tangential velocity 
of the sphere at the surface is zero, i.e., when the sphere 
stops sliding.
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
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At the instant t1 when the sphere stops sliding,

11 rv 
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Constrained Plane Motion
• Most engineering applications involve rigid 

bodies which are moving under given 
constraints, e.g., cranks, connecting rods, and 
non-slipping  wheels.

• Constrained plane motion:  motions with 
definite relations between the components of 
acceleration of the mass center and the angular 
acceleration of the body.

• Solution of a problem involving constrained 
plane motion begins with a kinematic analysis.

• e.g., given and , find P, NA, and NB.
- kinematic analysis yields
- application of d’Alembert’s principle yields 
P, NA, and NB.

. and yx aa

Constrained Motion:  Noncentroidal Rotation
• Noncentroidal rotation:  motion of a body is 

constrained to rotate about a fixed axis that does 
not pass through its mass center.

• Kinematic relation between the motion of the mass 
center G and the motion of the body about G,

2 rara nt 

• The kinematic relations are used to eliminate
from equations derived from 

d’Alembert’s principle or from the method of 
dynamic equilibrium.

nt aa  and 
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Constrained Plane Motion:  Rolling Motion
• For a balanced disk constrained to 

roll without sliding, 
 rarx 

• Rolling, no sliding:
NF s ra 

Rolling, sliding impending:
NF s ra 

Rotating and sliding:
NF k ra , independent

• For the geometric center of an 
unbalanced disk,

raO 

The acceleration of the mass center,

   
nOGtOGO

OGOG

aaa

aaa








Sample Problem 16.6

The portion AOB of the mechanism is 
actuated by gear D and at the instant 
shown has a clockwise angular velocity 
of 8 rad/s and a counterclockwise 
angular acceleration of 40 rad/s2.  

Determine: a) tangential force exerted 
by gear D, and b) components of the 
reaction at shaft O.

kg 3

mm 85

kg 4






OB

E

E

m

k

m

SOLUTION:

• Draw the free-body-equation for AOB,
expressing the equivalence of the 
external and effective forces.

• Evaluate the external forces due to the 
weights of gear E and arm OB and the 
effective forces associated with the 
angular velocity and acceleration.

• Solve the three scalar equations 
derived from the free-body-equation 
for the tangential force at A and the 
horizontal and vertical components of 
reaction at shaft O.
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Sample Problem 16.6

rad/s 8

2srad40

kg 3

mm 85

kg 4






OB

E

E

m

k

m

SOLUTION:

• Draw the free-body-equation for AOB.

• Evaluate the external forces due to the weights of 
gear E and arm OB and the effective forces.

  
   N4.29sm81.9kg3

N2.39sm81.9kg4
2

2





OB

E

W

W

    
mN156.1

srad40m085.0kg4 222


  EEE kmI

       
N0.24

srad40m200.0kg3 2



 rmam OBtOBOB

       
N4.38

srad8m200.0kg3 22



 rmam OBnOBOB

      
mN600.1

srad40m.4000kg3 22
12
12

12
1



  LmI OBOB

Sample Problem 16.6

N4.29

N2.39




OB

E

W

W

mN156.1 EI

  N0.24tOBOB am

  N4.38nOBOB am

mN600.1 OBI

• Solve the three scalar equations derived from the free-
body-equation for the tangential force at A and the 
horizontal and vertical components of reaction at O.

 effOO MM  

     
   mN600.1m200.0N0.24mN156.1

m200.0m120.0



  OBtOBOBE IamIF

N0.63F

 effxx FF  

  N0.24 tOBOBx amR
N0.24xR

 
effyy FF  

 
N4.38N4.29N2.39N0.63 



y

OBOBOBEy

R

amWWFR

N0.24yR
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Sample Problem 16.8

A sphere of weight W is released with 
no initial velocity and rolls without 
slipping on the incline.

Determine: a) the minimum value of 
the coefficient of friction, b) the 
velocity of G after the sphere has 
rolled 10 ft and c) the velocity of G if 
the sphere were to move 10 ft down a 
frictionless incline.

SOLUTION:

• Draw the free-body-equation for the 
sphere, expressing the equivalence of the 
external and effective forces.

• With the linear and angular accelerations 
related, solve the three scalar equations 
derived from the free-body-equation for 
the angular acceleration and the normal 
and tangential reactions at C.

• Calculate the velocity after 10 ft of 
uniformly accelerated motion.

• Assuming no friction, calculate the linear 
acceleration down the incline and the 
corresponding velocity after 10 ft.

• Calculate the friction coefficient required 
for the indicated tangential reaction at C.

Sample Problem 16.8
SOLUTION:

• Draw the free-body-equation for the sphere, expressing 
the equivalence of the external and effective forces.

ra 

• With the linear and angular accelerations related, solve 
the three scalar equations derived from the free-body-
equation for the angular acceleration and the normal 
and tangential reactions at C.

   effCC MM

   
   






























2

2
5
2

5

2

sin

r
g

W
rr

g

W

mrrmr

IramrW

r

g

7

sin5  

 
7

30sinsft2.325

7

30sin5

2 





g
ra 

2sft50.11a
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Sample Problem 16.8
• Solve the three scalar equations derived from the free-

body-equation for the angular acceleration and the 
normal and tangential reactions at C.

r

g

7

sin5  

2sft50.11 ra

   effxx FF

WWF

g

g

W

amFW

143.030sin
7

2

7

sin5

sin










  
effyy FF

WWN

WN

866.030cos

0cos


 

• Calculate the friction coefficient required for the 
indicated tangential reaction at C.

W

W

N

F

NF

s

s

866.0

143.0








165.0s

Sample Problem 16.8

r

g

7

sin5  

2sft50.11 ra

• Calculate the velocity after 10 ft of uniformly 
accelerated motion.

 
  ft10sft50.1120

2
2

0
2
0

2



 xxavv

sft17.15v


   effGG MM 00  I

• Assuming no friction, calculate the linear acceleration 
and the corresponding velocity after 10 ft.

   effxx FF

  22 sft1.1630sinsft2.32

sin













a

a
g

W
amW 

 
  ft10sft1.1620

2
2

0
2
0

2



 xxavv

sft94.17v

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Sample Problem 16.9

A cord is wrapped around the inner 
hub of a wheel and pulled 
horizontally with a force of 200 N.  
The wheel has a mass of 50 kg and a 
radius of gyration of 70 mm.  
Knowing s = 0.20 and k = 0.15, 
determine the acceleration of G and 
the angular acceleration of the wheel.

SOLUTION:

• Draw the free-body-equation for the 
wheel, expressing the equivalence of the 
external and effective forces.

• Assuming rolling without slipping and 
therefore, related linear and angular 
accelerations, solve the scalar equations 
for the acceleration and the normal and 
tangential reactions at the ground.

• Compare the required tangential reaction 
to the maximum possible friction force.

• If slipping occurs, calculate the kinetic 
friction force and then solve the scalar 
equations for the linear and angular 
accelerations.

Sample Problem 16.9
SOLUTION:

• Draw the free-body-equation for the wheel,.

Assume rolling without slipping,

 


m100.0
 ra

  
2

22

mkg245.0

m70.0kg50



 kmI

• Assuming rolling without slipping, solve the scalar 
equations for the acceleration and ground reactions.

    
    

   22

2

22

sm074.1srad74.10m100.0

srad74.10

mkg245.0m100.0kg50mN0.8

m100.0m040.0N200









a

Iam






   effCC MM

   effxx FF

   N5.490sm074.1kg50

0
2 



mgN

WN

   effxx FF

  
N3.146

sm074.1kg50N200 2




F

amF



12/2/2014

20

Sample Problem 16.9

N3.146F N5.490N

Without slipping,

• Compare the required tangential reaction to the 
maximum possible friction force.

  N1.98N5.49020.0max  NF s

F > Fmax , rolling without slipping is impossible.

• Calculate the friction force with slipping and solve the 
scalar equations for linear and angular accelerations.

  N6.73N5.49015.0  NFF kk 

   effGG MM

     
 

2

2

srad94.18

mkg245.0

m060.0.0N200m100.0N6.73










2srad94.18

   effxx FF

 akg50N6.73N200  2sm53.2a

Sample Problem 16.10

The extremities of a 4-ft rod 
weighing 50 lb can move freely and 
with no friction along two straight 
tracks.  The rod is released with no 
velocity from the position shown.

Determine:  a) the angular 
acceleration of the rod, and b) the 
reactions at A and B.

SOLUTION:

• Based on the kinematics of the constrained 
motion, express the accelerations of A, B, 
and G in terms of the angular acceleration.

• Draw the free-body-equation for the rod,
expressing the equivalence of the 
external and effective forces.

• Solve the three corresponding scalar 
equations for the angular acceleration and 
the reactions at A and B.
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Sample Problem 16.10
SOLUTION:

• Based on the kinematics of the constrained motion, 
express the accelerations of A, B, and G in terms of 
the angular acceleration.

Express the acceleration of B as

ABAB aaa
 

With the corresponding vector triangle and 
the law of signs yields

,4ABa

 90.446.5  BA aa

The acceleration of G is now obtained from

AGAG aaaa


 2  where AGa

Resolving into x and y components,




732.160sin2

46.460cos246.5





y

x

a

a

Sample Problem 16.10
• Draw the free-body-equation for the rod, expressing 

the equivalence of the external and effective forces.

 

 

  





69.2732.1
2.32

50

93.646.4
2.32

50

07.2

sftlb07.2

ft4
sft32.2

lb50

12

1

2

2
2

2
12
1











y

x

am

am

I

mlI

• Solve the three corresponding scalar equations for the 
angular acceleration and the reactions at A and B.

        
2srad30.2

07.2732.169.246.493.6732.150









   effEE MM

2srad30.2

   effxx FF

  
lb5.22

30.293.645sin




B

B

R

R

lb5.22BR


45o

  
effyy FF

    30.269.25045cos5.22 AR

lb9.27AR
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Example

The uniform rod AB of weight W is
released from rest when Assuming that
the friction force between end A and the
surface is large enough to prevent
sliding, determine immediately after
release (a) the angular acceleration of
the rod, (b) the normal reaction at A, (c)
the friction force at A.

SOLUTION:

• Draw the free-body-diagram and 
kinetic diagram showing the 
equivalence of the external forces 
and inertial terms.

• Write the equations of motion for 
the sum of forces and for the sum 
of moments.

• Apply any necessary kinematic 
relations, then solve the resulting 
equations.

Example

SOLUTION:  Given:  WAB = W, = 70o

• Find:  AB, NA, Ff

• Draw your FBD and KD
• Set up your equations of motion

x

y

xma

I 

yma

=
L/2

L/2

Ff

NA

W

70o

x xF ma y yF ma
f xF ma A yN mg ma 

G GM I 
2 2

21
12

( cos(70 )) ( sin(70 ))

                    

L L
A F

AB

N F

mL

 



 

70o

• Kinematics and solve (next page)
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Example

L/2

L/2

70o

• Set up your kinematic relationships – define rG/A, aG

/

2
/A /A

1
( cos(70 ) sin(70 ) )

2
(0.17101 ) (0.46985 )

0 ( ) (0.17101  0.46985  ) 0

0.46985 0.17101 

G A

G A AB G AB G

AB

AB AB

r L L

L L

L L

L L




 

 

 

   

    
  

i j

i j

a a r r

k i j

i j

 



• Realize that you get two equations from the kinematic relationship

0.46985         0.17101 x AB y ABa L a L   

f xF ma A yN mg ma 
• Substitute into the sum of forces equations

( )0.46985 f ABF m L  (0.17101 )A ABN m L g 

Example

• Substitute the Ff and NA into the sum of moments equation

• Masses cancel out, solve for AB

• Subbing into NA and Ff expressions,

( )0.46985 0.513 g
f LF m L     

21
2 2 12( cos(70 )) ( sin(70 ))L L

A F ABN F mL   

2 2

21
12

[ (0.17101 )]( cos(70 )) [ ( )0.46985 ]( sin(70 ))

                                                                    

L L
AB AB

AB

m L g m L

mL

 



   



 

0.513AB

g

L
   k

2 2 2 2 21
12 20.17101 0.46985  ( cos(70 ))L

AB AB ABL L L g      

• The negative sign means  is 
clockwise, which makes sense.

(0.17101 0.513 )g
A LN m L g    

0.912AN mg 0.241fF mg 


