1. A. Franciosi and C.G. Van de Walle, Heterojunction band offset engineering, Surf. Sci. Rep. 25, 1-40 (1996).
2. R.T. Tung, Recent advances in Schottky barrier concepts, Mat. Sci. Eng. R 35, 1 (2001).
3. D. Cahen and A. Kahn, Electron energetics at surfaces and interfaces: concepts and experiments, Adv. Mater. 15, 271-277 (2003).
4. J. Tersoff, Schottky barrier heights and the continuum of gap states, Phys. Rev. Lett. 52, 465-8 (1984).
5. J.L. Freeouf, Are interface states consistent with Schottky barrier measurements?, Appl. Phys. Lett. 41, 285 (1982).
6. R.T. Tung, Schottky barrier height-do we really understand what we measure?, J. Vac. Sci. Technol. B 11, 1546-52 (1993).
7. R.T. Tung, Chemical bonding and Fermi level pinning at metal-semiconductor interfaces, Phys. Rev. Lett. 84, 6078-81 (2000).
8. R.T. Tung, Formation of an electric dipole at metal-semiconductor interfaces, Phy. Rev. B 64, 205310 (2001). http://prb.aps.org/.
9. M.O. Aboelfotoh, C. Fröjdh, and C.S. Petersson, Schottky-barrier behavior of metals on n- and p-type 6H-SiC, Phys. Rev. B 67, 075312 (2003).
10. R.A. McKee, F.J. Walker, M. Buongiorno Nardelli, W.A. Shelton, and G.M. Stocks, The Interface Phase and the Schottky Barrier for a Crystalline Dielectric on Silicon, Science 300, 1726-1730 (2003).
11. K.W. Hipps, MOLECULAR ELECTRONICS: It's All About Contacts, Science 294, 536-537 (2001).
12. A. Nitzan and M.A. Ratner, Electron Transport in Molecular Wire Junctions, Science 300, 1384-1389 (2003).
13. M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, and J.M. Tour, Conductance of a molecular junction, Science 278, 252-254 (1997).
14. J. Reichert, R. Ochs, D. Beckmann, H.B. Weber, M. Mayor, and H. von Lohneysen, Driving current through single organic molecules, Phys. Rev. Lett. 88, art. no.-176804 (2002).
15. R.P. Andres, T. Bein, M. Dorogi, S. Feng, J. I. Henderson, C. P. Kubiak, W. Mahoney, R. G. Osifchin, and R. Reifenberger, ``Coulomb Staircase'' at Room Temperature in a Self-Assembled Molecular Nanostructure, Science 272, 1323-1325 (1996).
16. L.A. Bumm, J. J. Arnold, M. T. Cygan, T. D. Dunbar, T. P. Burgin, L. Jones II, D. L. Allara, J. M. Tour, and P. S. Weiss, Are Single Molecular Wires Conducting?, Science 271, 1705-1707 (1996).
17. F.F. Fan, J. Yang, S.M. Dirk, D.W. Price, D. Kosynkin, J.M. Tour, and A.J. Bard, Determination of the Molecular Electrical Properties of Self-Assembled Monolayers of Compounds of Interest in Molecular Electronics, J. Am. Chem. Soc. 123, 2454 (2001).
18. X.D. Cui, X. Zarate, J. Tomfohr, O.F. Sankey, A. Primak, A.L. Moore, T.A. Moore, D. Gust, G. Harris, and S.M. Lindsay, Making electrical contacts to molecular monolayers, Nanotechnol. 13, 5-14 (2002).
19. D.J. Wold, R. Haag, M.A. Rampi, and C.D. Frisbie, Distance dependence of electron tunneling through self- assembled monolayers measured by conducting probe atomic force microscopy: Unsaturated versus saturated molecular junctions, J. Phys. Chem. B 106, 2813-2816 (2002).
20. K. Slowinski, R.V. Chamberlain, C.J. Miller, and M. Majda, Through-Bond and Chain-to-Chain Coupling. Two Pathways in Electron Tunneling through Liquid Alkanethiol Monolayers on Mercury Electrodes, J. Am. Chem. Soc. 119, 11910 -11919 (1997).
21. K. Slowinski, H.K.Y. Fong, and M. Majda, Mercury-Mercury Tunneling Junctions. 1. Electron Tunneling Across Symmetric and Asymmetric Alkanethiolate Bilayers, J. Am. Chem. Soc. 121, 7257 (1999).
22. R.E. Holmlin, R. Haag, M.L. Chabinyc, R.F. Ismagilov, A.E. Cohen, A. Terfort, M.A. Rampi, and G.M. Whitesides, Electron Transport through Thin Organic Films in Metal-Insulator-Metal Junctions Based on Self-Assembled Monolayers, J. Am. Chem. Soc. 123, 5075 (2001).
23. A. Vilan, A. Shanzer, and D. Cahen, Molecular control over Au/GaAs diodes, Nature 404, 166-8 (2000).
24. A. Vilan and D. Cahen, Soft Contact Deposition onto Molecularly Modified GaAs. Thin Metal Film Flotation: Principles and Electrical Effects, Adv. Funct. Mater. 12, 795-807 (2002).
25. A. Vilan, J. Ghabboun, and D. Cahen, Molecule-Metal Polarization at Rectifying GaAs Interfaces, J. Phys. Chem. B 107, 6360 -6376 (2003).
26. J.G. Kushmerick, D.B. Holt, S.K. Pollack, M.A. Ratner, J.C. Yang, T.L. Schull, J. Naciri, M.H. Moore, and R. Shashidhar, Effect of Bond-Length Alternation in Molecular Wires, J. Am. Chem. Soc. 124, 10654-10655 (2002).
27. J.G. Kushmerick, J. Naciri, J. C. Yang, and R. Shashidhar, Conductance Scaling of Molecular Wires in Parallel, Nano Lett. 3, 897-900 (2003).
28. Y.-L. Loo, R.L. Willett, K.W. Baldwin, and J.A. Rogers, Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics, Appl. Phys. Lett. 81, 562-564 (2002).
29. Y.-L. Loo, D.V. Lang, J.A. Rogers, and J.W.P. Hsu, Electrical contacts to molecular layers by nanotransfer printing, Nano Lett. 3, 913-917 (2003).
30. C. Kim, P.E. Burrows, and S.R. Forrest, Micropatterning of Organic Electronic Devices by Cold-Welding, Science 288, 831 (2000).
31. A. Salomon, D. Cahen, S.M. Lindsay, J. Tomfohr, V.B. Engelkes, and C.D. Frisbie, Comparison of electronic transport measurements on organic molecules, Adv. Mater. 15, 1 (2003).
32. W. Wang, T. Lee, and M.A. Reed, Mechanism of electron conduction in self-assembled alkanethiol monolayer devices, Phys. Rev. B 68, 035416 (2003).
33. G.K. Ramachandran, T.J. Hopson, A.M. Rawlett, L.A. Nagahara, A. Primak, and S.M. Lindsay, A Bond-Fluctuation Mechanism for Stochastic Switching in Wired Molecules, Science 300, 1413-1416 (2003).
34. R.S. Williams, D.R. Stewart, Y. Chen, A.A. Ohlberg, J. Lau, and G.-Y. Jung, Transport, switching, devices and circuits in metal/molecule/metal systems, presented at Materials Research Society meeting, Boston, MA, Nov. 2003. (2003).
35. I.G. Hill, A. Rajagopal, A. Kahn, and Y. Hu, Molecular level alignment at organic semiconductor-metal interfaces, Appl. Phys. Lett. 73, 662-664 (1998).
36. H. Ishii, K. Sugiyama, E. Ito, and K. Seki, Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces, Adv. Mater. 11, 605-625 (1999).
37. C.F. Shen, A. Kahn, and J. Schwartz, Role of metal-molecule chemistry and interdiffusion on the electrical properties of an organic interface: The Al-F16CuPc case, J. Appl. Phys. 90, 6236-6242 (2001).
38. I.G. Hill, D. Milliron, J. Schwartz, and A. Kahn, Organic semiconductor interfaces: electronic structure and transport properties, Appl. Surf. Sci. 166, 354-362 (2000).
39. W. Gao and A. Kahn, Controlled p doping of the hole-transport molecular material N,N-diphenyl-N,N-bis(1-naphthyl)-1,1-biphenyl-4,4-diamine with tetrafluorotetracyanoquinodimethane, J. Appl. Phys. 94, 359-366 (2003).
40. W. Gao and A. Kahn, Effect of electrical doping on molecular level alignment at organic–organic heterojunctions, Appl. Phys. Lett. 82, 4815-4817 (2003).
41. A. Kahn and W. Gao, Impact of electrical doping on molecular level alignment at metal-organic and organic-organic heterojunctions, Private communications & presented at Materials Research Society meeting, Boston, MA, Nov., 2003. (2003).
42. L.J. Brillson, Contacts to Semiconductors. 1993, New Jersey: Noyes Pub.
43. W.E. Spicer, Z. Liliental-Weber, E. Weber, N. Newman, T. Kendelewicz, R. Cao, C. McCants, P. Mahowald, K. Miyano, and I. Lindau, The advanced unified defect model for Schottky barrier formation, J. Vac. Sci. Technol. B 6, 1245-51 (1988).
44. W. Monch, Chemical trends in Schottky barriers: charge transfer into adsorbate-induced gap states and defects, Phys. Rev. B 37, 7129-32 (1988).
45. R.T. Tung, Schottky-barrier formation at single-crystal metal-semiconductor interfaces, Phys. Rev. Lett. 52, 461-4 (1984).
46. C.J. Palmstrom, T.L. Cheeks, H.L. Gilchrist, J.G. Zhu, C.B. Carter, B.J. Wilkens, and R. Martin, Effect of orientation on the Schottky barrier height of thermodynamically stable epitaxial metal/GaAs structures, J. Vac. Sci. Technol. A 10, 1946-53 (1992).
47. L. Sorba, G. Bratina, G. Ceccone, A. Antonini, J.F. Walker, M. Micovic, and A. Franciosi, Tuning AlAs-GaAs band discontinuities and the role of Si-induced local interface dipoles, Phys. Rev. B 43, 2450-3 (1991).
48. R.G. Dandrea and C.B. Duke, Interfacial atomic composition and Schottky barrier heights at the Al/GaAs(001) interface, J. Vac. Sci. Technol. B 11, 1553-8 (1993).
49. J.P. Sullivan, R.T. Tung, M.R. Pinto, and W.R. Graham, Electron transport of inhomogeneous Schottky barriers: a numerical study, J. Appl. Phys. 70, 7403-24 (1991). http://ojps.aip.org/japo/.
50. R.T. Tung, Electron transport at metal-semiconductor interfaces: General theory, Phys. Rev. B 45, 13509-23 (1992).
51. Q.Z. Liu and S.S. Lau, A review of the metal-GaN contact technology, Solid-St. Electron. 42, 677-91 (1998).
52. A. Zeitouny, M. Eizenberg, S.J. Pearton, and F. Ren, Contact resistivity and transport mechanisms in W contacts to p- and n-GaN, J. Appl. Phys. 88, 2048-53 (2000).
53. T. Arai, H. Sueyoshi, Y. Koide, M. Moriyama, and M. Murakami, Development of Pt-based ohmic contact materials for p-type GaN, J. App. Phys. 89, 2826-31 (2001).
54. J.D. Plummer and P.B. Griffin, Material and Process Limits in Silicon VLSI Technology, Proc. IEEE 89, 240 (2001).
55. T. Ushiki, M.-C. Yu, Y. Hirano, H. Shimada, M. Morita, and T. Ohmi, Reliable tantalum-gate fully-depleted MOSFET technology featuring low-temperature processing, IEEE Trans. Elec. Dev. 44, 1467 (1997).
56. R.H. Williams, V. Montgomery, R.R. Varma, and A. McKinley, The influence of interfacial layers on the nature of gold contacts to silicon and indium phosphide, J. Phys. D 10, L253-6 (1977).
57. F. Hasegawa, M. Onomura, C. Mogi, and Y. Nannichi, Reduction of Schottky barrier heights by surface oxidation of GaAs and its influence on DLTS signals for the midgap level EL2, Solid-St. Electron. 31, 223-8 (1988).
58. J.R. Waldrop, Metal contact to p-type GaAs with large Schottky barrier heights, Appl. Phys. Lett. 53, 1518-20 (1988).
59. J.C. Costa, F. Williamson, T.J. Miller, K. Beyzavi, M.I. Nathan, D.S.L. Mui, S. Strite, and H. Morkoc, Barrier height variation in Al/GaAs Schottky diodes with a thin silicon interfacial layer, Appl. Phys. Lett. 58, 382-4 (1991).
60. M. Cantile, L. Sorba, S. Yildirim, P. Faraci, G. Biasiol, A. Franciosi, T.J. Miller, and M.I. Nathan, Silicon-induced local interface dipole in Al/GaAs(001) Schottky diodes, Appl. Phys. Lett. 64, 988-90 (1994).
61. R.H. Tredgold and Z.I. El-Badawy, Increase of Schottky barrier height at GaAs surfaces by carboxylic acid monolayers and multilayers, J. Phys. D 18, 103-9 (1985).
62. I.H. Campbell, S. Rubin, T.A. Zawodzinski, J.D. Kress, R.L. Martin, D.L. Smith, N.N. Baraskkov, and J.P. Ferraris, Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers, Phys. Rev. B 54, R14321-4 (1996).
63. V. Montgomery, R.H. Williams, and G.P. Srivastava, The influence of adsorbed layers in controlling Schottky barriers, J. Phys. C 14, L191-4 (1981).
64. J.R. Waldrop, Direct variation of metal-GaAs Schottky barrier height by the influence of interface S, Se, and Te, Appl. Phys. Lett. 47, 1301-3 (1985).
65. M. Wittmer and J.L. Freeouf, Ideal Schottky diodes on passivated silicon, Phys. Rev. Lett. 69, 2701-4 (1992).
66. A.M. Fajardo and N.S. Lewis, Free-energy dependence of electron-transfer rate constants at Si/liquid interfaces, J. Phys. Chem. B 101, 11136 (1997).
67. A.J. Nozik and R. Memming, Physical chemistry of semiconductor-liquid interfaces, J. Phys. Chem. 100, 13061-78 (1996).
68. M.C. Lonergan, A tunable diode based on an inorganic semiconductor conjugated polymer interface, Science 278, 2103-6 (1997).
69. G.D. Waddill, C.M. Aldao, I.M. Vitomirov, S.G. Anderson, C. Capasso, and J.H. Weaver, Ag and Co cluster deposition on GaAs(110): Fermi level pinning in the absence of metal induced gap states and defects., J. Vac. Sci. Technol. B 7, 950-957 (1989).
70. G.D. Waddill, I.M. Vitomirov, C.M. Aldao, S.G. Anderson, C. Capasso, J.H. Weaver, and Z. Liliental-Weber, Abrupt interfaces with novel structural and electronic properties: Metal-cluster deposition and metal-semiconductor junctions, Phys. Rev. B 41, 5293 (1990).
71. Y. Xia and G.M. Whitesides, Soft Lithography, Angew. Chem. Int. Ed. 37, 550-575 (1998).
72. U. Gosele and Q.Y. Tong, Semiconductor wafer bonding, Annu. Rev. Mater. Sci. 28, 215-241 (1998).
73. K. Dessein, P.S.A. Kumar, S. Nemeth, L. Delaey, G. Borghs, and J. De Boeck, The vacuum wafer bonding technique as an alternative method for the fabrication of metal/semiconductor heterostructures, J. Cryst. Growth 227, 906-910 (2001).
74. H.C. Lin, K.L. Chang, K.C. Hsieh, K.Y. Cheng, and W.H. Wang, Metallic wafer bonding for the fabrication of long-wavelength vertical-cavity surface-emitting lasers, J. Appl. Phys. 92, 4132 (2002).
75. R.T. Tung, Epitaxial CoSi2 and NiSi2 Thin-Films, Mater. Chem. Phys. 32, 107-133 (1992).
76. W.G. Cullen and P.N. First, Island shapes and intermixing for submonolayer nickel on Au(111), Surf. Sci. 420, 53-64 (1999).
77. B. Voigtländer, G. Meyer, and N.M. Amer, Epitaxial growth of thin magnetic cobalt films on Au(111) studied by scanning tunneling microscopy, Phys. Rev. B 44, 10354–7 (1991).
78. S.P. Lacour, S. Wagner, Z. Huang, and Z. Suo, Stretchable gold conductors on elastomeric substrates, Appl. Phys. Lett. 82, 2404-2406 (2003).
79. R. Huang and Z. Suo, Wrinkling of a compressed elastic film on a viscous layer, J. Appl. Phys. 91, 1135-42 (2002).