1. (30 points) Knowing that $\alpha = 50^\circ$ and that boom AC exerts on pin C a force directed along line AC, determine the force P such that the tension in the cable is 300 lb.

Solution:

In the free-body diagram for the pin at C, there are three forces, the sum of which should vanish. The three forces form a triangle with two of the angles of the triangle identified as 100° and 30°. The third is then 50°. The Law of Sines can now be used to write

$$\frac{P}{\sin 100^\circ} = \frac{300 \text{ lb}}{\sin 50^\circ} = \frac{F_{AC}}{\sin 30^\circ}$$

$$P = 386 \text{ lb}$$
2. (25 points, Partial Credit) To keep a door closed, a wooden stick is wedged between the floor and the doorknob. The stick exerts at B a 175-N force directed along line AB. Replace that force with an equivalent force-couple system at C.

Solution:

Since a stick cannot pull the doorknob, the 175 N force is in the direction from A to B, and can be written as

$$\vec{F} = 175 \cdot \frac{73\hat{i} + 990\hat{j} - 494\hat{k}}{\sqrt{73^2 + 990^2 + 494^2}} = (11.5\hat{i} + 156\hat{j} - 78.0\hat{k})\text{N}$$

The displacement from C to B is

$$\vec{r}_{B/C} = (683\hat{i} - 860\hat{j} + 0\hat{k}) \text{ mm}$$

The moment about C is

$$\vec{M}_C = \vec{r}_{B/C} \times \vec{F}$$

$$= (683\hat{i} - 860\hat{j}) \times (11.5\hat{i} + 156\hat{j} - 78.0\hat{k}) \text{ mm} \cdot \text{N}$$

$$= (67.1\hat{i} + 53.3\hat{j} + 116\hat{k}) \text{ m} \cdot \text{N}$$
3. (20 points, Partial Credit) Two 150-mm-diameter pulleys are mounted on line shaft AD. The belts at B and C lie in vertical planes parallel to the yz plane. Replace the belt forces shown with an equivalent force-couple system at A.

Solution:

The two forces on belt at C combine to a total force of

$$\vec{F}_C = 370 N \cdot (-\sin 10^\circ \hat{j} - \cos 10^\circ \hat{k})$$

$$= (-64.2 \hat{j} - 364 \hat{k}) \ N$$

and a moment about C of

$$\vec{M}_C = 75 \cdot 60 \hat{i} \ mm \cdot N \ .$$

When transferred to point A, the moment of these two forces is

$$\vec{M}_{AC} = 4500 \hat{i} + 405 \cdot 370(\cos 10^\circ \hat{j} - \sin 10^\circ \hat{k}) \ mm \cdot N$$

$$= (4.50 \hat{i} + 147.6 \hat{j} - 26.0 \hat{k}) \ m \cdot N$$

The two forces on belt at B combine to a total of

$$\vec{F}_B = [(-240 \cos 20^\circ - 145) \hat{j} + 240 \sin 20^\circ \hat{k}] N = (-370 \hat{j} + 82.1 \hat{k}) N$$

and a moment about B of

$$\vec{M}_B = 75 \cdot 95 \hat{i} \ mm \cdot N = 7.12 \hat{i} \ m \cdot N \ .$$

When transferred to point A, the couple of these two forces is

$$\vec{M}_{AB} = (7.12 \hat{i} - 14.78 \hat{j} - 66.7 \hat{k}) \ m \cdot N$$

The total force at point A is

$$\vec{F}_A = \vec{F}_B + \vec{F}_C = (-434 \hat{j} - 282 \hat{k}) N$$

and the total couple at A is

$$\vec{M}_A = (4.50 \hat{i} + 147.6 \hat{j} - 26.0 \hat{k} + 7.12 \hat{i} - 14.78 \hat{j} - 66.7 \hat{k}) \ m \cdot N$$

$$= (11.62 \hat{i} + 132.8 \hat{j} - 92.7 \hat{k}) \ m \cdot N$$
4. **(25 points)** A 50-kg crate is attached to the trolley-beam system shown. Knowing that \(a = 1.2 \) m, determine (a) the tension in cable \(CD \), (b) the reaction at \(B \).

Solution:

Three forces acting on the massless steel beam sum to zero force and zero moment. The moment about \(B \) vanishes, from which we write

\[
M_B = 0 = -T \cdot 1.8 \sin 55° + 50 \times 9.8 \cdot 1.2 \ (m \cdot N)
\]

\[
T = 399 \text{ N}
\]

\[
0 = B_x + 399 \sin 55° \quad B_x = -327 \text{ N}
\]

\[
0 = B_y - 50 \times 9.8 + 399 \cos 55° \quad B_y = 261 \text{ N}
\]

Or, \(B = \sqrt{327^2 + 261^2} = 419 \text{ N} \) at an angle of \(180° - \tan^{-1}(261/327) = 141.4° \).
5. (10 points, Extra Credit) A 450-lb load hangs from the corner \(C \) of a rigid piece of pipe \(ABCD \) which has been bent as shown. The pipe is supported by the ball-and-socket joints \(A \) and \(D \), which are fastened, respectively, to the floor and to a vertical wall and by a cable attached at the midpoint \(E \) of the portion \(BC \) of the pipe and at a point \(G \) on the wall. Determine (a) where \(G \) should be located if the tension in the cable is to be minimum, (b) the corresponding minimum value of the tension.

Solution:

The total moment about the line \(AD \), which has a direction unit vector of

\[
\mathbf{\lambda}_{AD} = \frac{12\mathbf{i} + 12\mathbf{j} - 6\mathbf{k}}{\sqrt{12^2 + 12^2 + 6^2}} = \frac{2}{3}\mathbf{i} + \frac{2}{3}\mathbf{j} - \frac{1}{3}\mathbf{k},
\]

should vanish.

The moment due to the 450 lb force is

\[
\mathbf{\lambda}_{AD} \cdot \mathbf{\bar{r}}_{C/A} \times (-450\mathbf{j}) = \left(\frac{2}{3}\mathbf{i} + \frac{2}{3}\mathbf{j} - \frac{1}{3}\mathbf{k}\right) \times (12\mathbf{i} + 12\mathbf{j} - (-450\mathbf{j})) \text{ ft} \cdot \text{lb} = 1800 \text{ ft} \cdot \text{lb},
\]

which should be balanced by the moment due to tension. Maximum moment is applied at point \(E \), if the direction of the force (i.e. \(EG \)) is made parallel to

\[
(6\mathbf{i} + 12\mathbf{j}) \times \left(\frac{2}{3}\mathbf{i} + \frac{2}{3}\mathbf{j} - \frac{1}{3}\mathbf{k}\right) = -4\mathbf{i} + 2\mathbf{j} - 4\mathbf{k} = 6 \text{ ft} \left\{-\frac{2}{3}\mathbf{i} + \frac{1}{3}\mathbf{j} - \frac{2}{3}\mathbf{k}\right\}
\]

Since 6 ft is the lever arm, the minimum value of tension is

\[
1800 \text{ ft} \cdot \text{lb} / 6 \text{ ft} = 300 \text{ lb}
\]

To find the location \(G \), we notice that the z-component of \(\mathbf{\bar{r}}_{G/E} \) is -6 ft, which means that

\[
\mathbf{\bar{r}}_{G/E} = \left(-6.00\mathbf{i} + 3.00\mathbf{j} - 6.00\mathbf{k}\right) \text{ ft}
\]

or

\[
\mathbf{\bar{r}}_{G/D} = \left(-12.0\mathbf{i} + 3.00\mathbf{j}\right) \text{ ft}
\]