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Chapter 14, Systems of Particles

• The effective force of a particle is defined as the product of 
it mass and acceleration.  It will be shown that the system of 
external forces acting on a system of particles is equipollent
with the system of effective forces of the system.

• The mass center of a system of particles will be defined 
and its motion described.

• Application of the work-energy principle and the 
impulse-momentum principle to a system of particles will 
be described.  Result obtained are also applicable to a 
system of rigidly connected particles, i.e., a rigid body.

• Analysis methods will be presented for variable systems 
of particles, i.e., systems in which the particles included 
in the system change.

Application of Newton’s Laws.  Effective Forces
• Newton’s second law for each particle  Pi

in a system of  n particles,
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• The system of external and internal forces on 
a particle is equivalent to the effective force 
of the particle.

• The system of external and internal forces 
acting on the entire system of particles is 
equivalent to the system of effective forces.
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Application of Newton’s Laws.  Effective Forces
• Summing over all the elements,
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• Since the internal forces occur in equal 
and opposite collinear pairs, the resultant 
force and couple due to the internal 
forces are zero,
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• The system of external forces and the 
system of effective forces are 
equipollent by not equivalent.

Linear & Angular Momentum

• Linear momentum of the system of 
particles,
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• Angular momentum about fixed point O
of system of particles,
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• Resultant of the external forces is 
equal to rate of change of linear 
momentum of the system of 
particles,

LF 


OO HM 


• Moment resultant about fixed point O of 
the external forces is equal to the rate of 
change of angular momentum of the 
system of particles,
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Motion of the Mass Center of a System of Particles

• Mass center G of system of particles is defined 
by position vector       which satisfiesGr
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• Differentiating twice,
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• The mass center moves as if the entire mass and 
all of the external forces were concentrated at 
that point.

Angular Momentum About the Mass Center
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• The angular momentum of the system of 
particles about the mass center,

• The moment resultant about G of the external 
forces is equal to the rate of change of angular 
momentum about G of the system of particles.

• The centroidal frame is not, 
in general, a Newtonian 
frame.

• Consider the centroidal frame 
of reference Gx’y’z’, which 
translates with respect to the 
Newtonian frame Oxyz.

iGi aaa  
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Angular Momentum About the Mass Center
• Angular momentum about G of particles in 

their absolute motion relative to the 
Newtonian Oxyz frame of reference.
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• Angular momentum about G of 
the particles in their motion 
relative to the centroidal Gx’y’z’
frame of reference,
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• Angular momentum about G of the particle 
momenta can be calculated with respect to 
either the Newtonian or centroidal frames of 
reference.

Conservation of Momentum

• If no external forces act on the 
particles of a system, then the linear 
momentum and angular momentum 
about the fixed point O are 
conserved.

constant constant

00


 

O

OO

HL

MHFL




• In some applications, such as 
problems involving central forces,
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• Concept of conservation of momentum 
also applies to the analysis of the mass 
center motion,
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Concept Question

Three small identical spheres A, B, and C, 
which can slide on a horizontal, frictionless 
surface, are attached to three 200-mm-long 
strings, which are tied to a ring G. Initially, each 
of the spheres rotate clockwise about the ring 
with a relative velocity of vrel.

Which of the following is true?

a) The linear momentum of the system is in the positive x direction 
b) The angular momentum of the system is in the positive y direction 
c) The angular momentum of the system about G is zero
d) The linear momentum of the system is zero

vrel

vrel

vrel

x

Sample Problem 14.2

A 20-lb projectile is moving with a 
velocity of 100 ft/s when it explodes into 
5 and 15-lb fragments.  Immediately after 
the explosion, the fragments travel in the 
directions A = 45o and B = 30o.

Determine the velocity of each fragment.
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x components:

 1002030cos1545cos5  BA vv

y components:

030sin1545sin5  BA vv

• Solve the equations simultaneously for th
fragment velocities.
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Problem

In a game of pool, ball A is moving with a 
velocity v0 when it strikes balls B and C, 
which are at rest and aligned as shown. 
Knowing that after the collision the three 
balls move in the directions indicated and 
that v0 = 12 ft/s and vC= 6.29 ft/s, 
determine the magnitude of the velocity of
(a) ball A, (b) ball B.

vC
vA

v0 vB

(12 ft/s)cos 30 sin 7.4 sin 49.3 (6.29)cos 45

0.12880 0.75813 5.9446
A B

A B

m mv mv m

v v

      
 

(12 ft/s)sin 30 cos 7.4 cos 49.3 (6.29)sin 45

0.99167 0.65210 1.5523
A B

A B

m mv mv m

v v

      
 

6.05 ft/sAv 

Concept Question
In a game of pool, ball A is moving with a 
velocity v0 when it strikes balls B and C, 
which are at rest and aligned as shown. 

vC
vA

v0 vB

After the impact, what is true 
about the overall center of mass 
of the system of three balls?

a) The overall system CG will move in the same direction as v0

b) The overall system CG will stay at a single, constant point
c) There is not enough information to determine the CG location
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Kinetic Energy
• Kinetic energy of a system of particles,
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• Expressing the velocity in terms of the 
centroidal reference frame,
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• Kinetic energy is equal to kinetic energy of 
mass center plus kinetic energy relative to 
the centroidal frame.

Work-Energy Principle.  Conservation of Energy
• Principle of work and energy can be applied to each particle  Pi ,

2211 TUT  

where            represents the work done by the internal forces       
and the resultant external force       acting on Pi .

ijf


iF
21U

• Principle of work and energy can be applied to the entire system by 
adding the kinetic energies of all particles and considering the work 
done by all external and internal forces.

• Although                    are equal and opposite, the work of these 
forces will not, in general, cancel out.

jiij ff
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 and 

• If the forces acting on the particles are conservative, the work is 
equal to the change in potential energy and

2211 VTVT 
which expresses the principle of conservation of energy for the 
system of particles.
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Principle of Impulse and Momentum
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• The momenta of the particles at time  t1 and the impulse of the forces 
from  t1 to t2 form a system of vectors equipollent to the system of 
momenta of the particles at time  t2 .

Sample Problem 14.4

Ball B, of mass mB,is suspended from a 
cord, of length l, attached to cart A, of 
mass mA, which can roll freely on a 
frictionless horizontal tract.  While the 
cart is at rest, the ball is given an initial 
velocity  

Determine (a) the velocity of B as it 
reaches it maximum elevation, and (b) 
the maximum vertical distance h
through which B will rise.

.20 glv 

SOLUTION:

• With no external horizontal forces, it 
follows from the impulse-momentum 
principle that the horizontal component 
of momentum is conserved.  This 
relation can be solved for the velocity of 
B at its maximum elevation.

• The conservation of energy principle 
can be applied to relate the initial 
kinetic energy to the maximum potential 
energy.  The maximum vertical distance 
is determined from this relation.
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Sample Problem 14.4
SOLUTION:
• With no external horizontal forces, it follows from the 

impulse-momentum principle that the horizontal 
component of momentum is conserved.  This relation can 
be solved for the velocity of B at its maximum elevation.
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Sample Problem 14.4

• The conservation of energy principle can be applied to relate 
the initial kinetic energy to the maximum potential energy.  
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Position 1 - Potential Energy:

Kinetic Energy:

Position 2 - Potential Energy:

Kinetic Energy:
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Sample Problem 14.5

Ball A has initial velocity v0 = 10 ft/s 
parallel to the axis of the table.  It hits 
ball B and then ball C which are both at 
rest.  Balls A and C hit the sides of the 
table squarely at A’ and C’ and ball B 
hits obliquely at B’.  

Assuming perfectly elastic collisions, 
determine velocities vA, vB, and vC with 
which the balls hit the sides of the table.

SOLUTION:

• There are four unknowns: vA, vB,x, vB,y, 
and vC.

• Write the conservation equations in 
terms of the unknown velocities and 
solve simultaneously.

• Solution requires four equations: 
conservation principles for linear 
momentum (two component equations), 
angular momentum, and energy.

Sample Problem 14.5
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SOLUTION:
• There are four unknowns: vA, 

vB,x, vB,y, and vC.

• The conservation of momentum and energy equations,
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Solving the first three equations in terms of vC,
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Substituting into the energy equation,
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Problem

Three small identical spheres A, B, and C, which can slide on a horizontal, 
frictionless surface, are attached to three 200-mm-long strings, which are tied 
to a ring G. Initially, the spheres rotate clockwise about the ring with 
a relative velocity of 0.8 m/s and the ring moves along the x-axis with a 
velocity v0= (0.4 m/s)i. Suddenly, the ring breaks and the three spheres move 
freely in the xy plane with A and B following paths parallel to the y-axis at a 
distance a= 346 mm from each other and C following a path parallel to the x
axis. Determine (a) the velocity of each sphere, (b) the distance d.

Group Problem Solving

Given: vArel= vBrel = vCrel = 0.8 
m/s, v0= (0.4 m/s)i , L= 200 
mm, a= 346 mm

Find:  vA, vB, vC (after ring 
breaks), d

SOLUTION:

• There are four unknowns: vA, vB, vB, d.

• Write the conservation equations in 
terms of the unknown velocities and 
solve simultaneously.

• Solution requires four equations: 
conservation principles for linear 
momentum (two component equations), 
angular momentum, and energy.

Apply the conservation of 
linear momentum equation 
– find L0 before ring breaks

0 (3m) 3 (0.4 ) m (1.2 m/s)m  L v i i

f A B Cmv mv mv  L j j i

What is Lf (after ring breaks)?
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Problem Solving

Set L0= Lf

(1.2 m/s) ( )C A Bm mv m v v  i i j

A Bv v

1.200 m/s 1.200 m/sC Cv  v

From the y components,

From the x components,

Apply the conservation of angular momentum equation

0( ) 3 3 (0.2m)(0.8 m/s) 0.480G relH mlv m m  H0:

Hf: ( ) ( )G f A A B A CH mv x mv x a mv d     

xA

Since vA= vB, and 
vC = 1.2 m/s, then:

0.480 0.346 A Cm mv mv d 
0.480 0.346 1.200

0.400 0.28833
A

A

v d

d v

 
 

Problem Solving

Need another equation-
try work-energy, where 
T0 = Tf

xA

Substitute in known values:

T0:

Tf:

 

2 2
0

2 2 2 2
0

1 1
(3m) 3

2 2

3 3
m [(0.4) (0.8) ] 1.200

2 2

rel

rel

T v mv

v v m m

    
 

     2 2 21 1 1

2 2 2f A B CT mv mv mv  

2 2 2

2

1
(1.200) 1.200

2

0.480

A A

A

v v

v

    


0.69282 m/sA Bv v 

0.400 0.28833(0.69282) 0.20024 md   

Solve for d:

0.693 m/sA v

0.693 m/sB v

1.200 m/sC v

;

;

0.200 md 
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Variable Systems of Particles

• Kinetics principles established so far were derived for  
constant systems of particles, i.e., systems which 
neither gain nor lose particles.

• A large number of engineering applications require the 
consideration of variable systems of particles, e.g., 
hydraulic turbine, rocket engine, etc.

• For analyses, consider auxiliary systems which consist 
of the particles instantaneously within the system plus 
the particles that enter or leave the system during a 
short time interval.   The auxiliary systems, thus 
defined, are constant systems of particles.

Problem 14.4

A bullet is fired with a horizontal velocity of 1500 ft/s through a 6-lb block 
A and becomes embedded in a 4.95-lb block B. Knowing that blocks A and 
B start moving with velocities of 5 ft/s and 9 ft/s, respectively, determine 
(a) the weight of the bullet, (b) its velocity as it travels from block A to 
block B.
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Problem 14.22

Two spheres, each of mass m, can slide freely on a frictionless horizontal surface. 
Sphere A is moving at a speed v0 = 16 ft/s when it strikes sphere B which is at rest 
and the impact causes sphere B to break into two pieces, each of mass m/2. 
Knowing that 0.7 s after the collision one piece reaches point C and 0.9 s after the 
collision the other piece reaches point D, determine (a) the velocity of sphere A
after the collision, (b) the angle  and the speed of the two pieces after the collision.

Problem 14.50

Three small spheres A, B, and C, each of mass m, are connected to a small ring D of 
negligible mass by means of three inextensible inelastic cods of length l. The 
spheres can slide freely on a frictionless horizontal surface and are rotating 
initially at a speed v0 about ring D which is at rest. Suddenly the cord CD breaks. 
After the other two cords have again become taut, determine (a) the speed of ring 
D, (b) the relative speed at which spheres A and B rotate about D, (c) the fraction 
of the original energy of spheres A and B which is dissipated when cords AD and 
BD i b t t
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Problem 14.42

In a game of pool, ball A is moving with a velocity v0 of magnitude 10 ft/s when it 
strikes balls B and C which are at rest and aligned as shown. Knowing that after 
the collision the three balls move in the directions indicated and assuming 
frictionless surfaces and perfectly elastic impact (i.e. conservation of energy), 
determine the magnitudes of the velocities vA, vB, and vC.


